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Abstract

The mass irruption of Deep Convolutional Neural Networks (CNNs) in computer vision since 2012 led to
a dominance of the image understanding paradigm consisting in an end-to-end fully supervised learning
workflow over large-scale annotated datasets. This approach proved to be extremely useful at solving a
myriad of classic and new computer vision tasks with unprecedented performance —often, surpassing that of
humans—, at the expense of vast amounts of human-labeled data, extensive computational resources and the
disposal of all of our prior knowledge on the task at hand. Even though simple transfer learning methods,
such as fine-tuning, have achieved remarkable impact, their success when the amount of labeled data in the
target domain is small is limited. Furthermore, the non-static nature of data generation sources will often
derive in data distribution shifts that degrade the performance of deployed models. As a consequence, there is
a growing demand for methods that can exploit elements of prior knowledge and sources of information other
than the manually generated ground truth annotations of the images during the network training process, so
that they can adapt to new domains that constitute, if not a small data regime, at least a small labeled data
regime.

This thesis targets such few or no labeled data scenario in three distinct image-to-image mapping learning
problems. It contributes with various approaches that leverage our previous knowledge of different elements
of the image formation process: We first present a data-efficient framework for both defocus and motion blur
detection, based on a model able to produce realistic synthetic local degradations. The framework comprises
a self-supervised, a weakly-supervised and a semi-supervised instantiation, depending on the absence or
availability and the nature of human annotations, and outperforms fully-supervised counterparts in a variety
of settings.

Our knowledge on color image formation is then used to gather input and target ground truth image pairs
for the RGB to hyperspectral image reconstruction task. We make use of a CNN to tackle this problem,
which, for the first time, allows us to exploit spatial context and achieve state-of-the-art results given a limited
hyperspectral image set.

In our last contribution to the subfield of data-efficient image-to-image transformation problems, we
present the novel semi-supervised task of zero-pair cross-view semantic segmentation: we consider the case of
relocation of the camera in an end-to-end trained and deployed monocular, fixed-view semantic segmentation
system often found in industry. Under the assumption that we are allowed to obtain an additional set of
synchronized but unlabeled image pairs of new scenes from both original and new camera poses, we present
ZPCVNet, a model and training procedure that enables the production of dense semantic predictions in
either source or target views at inference time. The lack of existing suitable public datasets to develop this
approach led us to the creation of MVMO, a large-scale Multi-View, Multi-Object path-traced dataset with
per-view semantic segmentation annotations. We expect MVMO to propel future research in the exciting
under-developed fields of cross-view and multi-view semantic segmentation.

Last, in a piece of applied research of direct application in the context of process monitoring of an Electric
Arc Furnace (EAF) in a steelmaking plant, we also consider the problem of simultaneously estimating the
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temperature and spectral emissivity of distant hot emissive samples. To that end, we design our own capturing
device, which integrates three point spectrometers covering a wide range of the Ultra-Violet, visible, and
Infra-Red spectra and is capable of registering the radiance signal incoming from an 8cm diameter spot
located up to 20m away. We then define a physically accurate radiative transfer model that comprises the
effects of atmospheric absorbance, of the optical system transfer function, and of the sample temperature and
spectral emissivity themselves. We solve this inverse problem without the need for annotated data using a
probabilistic programming-based Bayesian approach, which yields full posterior distribution estimates of the
involved variables that are consistent with laboratory-grade measurements.

Keywords: computer vision, neural networks, self-supervised learning, image-to-image mapping, proba-
bilistic programming
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Resum

La irrupció a gran escala de Xarxes Neuronals Convolucionals Profundes (Convolutional Neural Networks,
CNNs) a la visió per computador des de 2012 ha duït a un paradigma predominant d’interpretació de la imatge
consistent en un procés d’aprenentage completament supervisat amb conjunts massius de dades etiquetades.
Aquesta aproximació ha resultat ser extremadament útil per a solucionar una miríada de tasques de visió
per computador, tant noves com clàssiques, amb resultats sense precedents (sovint superiors als obtinguts
per humans), a costa d’emprar grans quantitats de dades anotades manualment, recursos computacionals de
gran magnitud, i tot el coneixement previ possible sobre la tasca a resoldre. Tot i que tècniques senzilles
de transferència de l’aprenentatge, com el reajustament acurat (fine tuning), han obtingut un gran impacte,
el seu èxit quan la quantitat de dades etiquetades al domini objectiu és petita es manté limitat. A més a
més, el caràcter no estàtic de les fonts de generació de dades habitualment resulta en canvis inesperats en la
distribució d’aquestes dades, degradant el rendiment dels models ja desplegats. Com a conseqüència, hi ha
una demanda creixent de mètodes que puguin explotar elements de coneixement previ i fonts d’informació
més enllà del conjunt d’etiquetes generades per un humà expert en el transcurs del procés d’entrenament de
la xarxa, per a que puguin adaptar-se a nous dominis que constitueixen, si no un règim d’escasses dades, sí
d’escasses dades etiquetades.

Aquesta tesi s’adreça a aquesta classe d’escenaris amb manca de dades etiquetades en tres problemes de
transformació imatge a imatge. Contribueix amb una sèrie de metodologies basades en coneixement a priori
dels diferents elements del procés de formació de la imatge. Primer introduïm un marc conceptual, eficient en
l’ús de dades, per al tractament del desenfocament tant estàtic com degut a moviment, basat en un model
capaç de produir degradacions locals sintètiques però realistes. Aquest marc es pot instanciar de tres maneres
diferents: en tècnica auto-supervisada, feblement supervisada, o semi-supervisada, en funció de la absència
o disponibilitat d’anotacions humanes, així com la seva naturalesa, i resulta ser superior a les corresponent
versions completament supervisades en una varietat de situacions.

El coneixement del procés de formació del color en la imatge és aprofitat després per a recopilar parelles
entrada/objectiu d’imatges en el context de reconstrucció hiperespectral de la imatge. Emprem una CNN per
a resoldre aquest problema, la qual cosa ens permet per primera vegada explotar context espacial i aconseguir
resultats que estableixen un nou estat de l’art a partir de un conjunt reduït d’imatges hiperespectrals.

En la nostra darrera contribució a l’àmbit de la transformació d’imatge a imatge en problemes amb poques
dades anotades, presentem la nova tasca semi-supervisada de segmentació semàntica amb zero parells i amb
vistes creuades: considerem el cas de recol·locació de camera en un sistema (comú en escenaris industrials)
de segmentació semàntica de vista fixada entrenat de principi a fi i desplegat. Assumint que podem obtenir un
conjunt adicional de pars d’imatges, no etiquetades però sí sincronitzades, de noves escenes emprant la posició
de càmera original i nova, presentem ZPCVNet, un model i procediment d’entrenament que possibilita la
generació de prediccions semàntiques denses tant en vistes de inici com vistes objectiu, en temps d’inferència.
La carència de bases de dades públiques per a poder desenvolupar la metodolgia proposta ens condueix a
la creació de MVMO, una base de dades pública de gran escala, multi-vista, multi-objecte, renderitzada
mitjançant path tracing, amb anotacions per-vista de segmentació semàntica. Pensem que MVMO promourà
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futura recerca en la molt interessant però poc explorada àrea de la segmentació semàntica multi-vista i amb
vistes creuades.

Finalment, en una peça de recerca aplicada amb aplicació directa en un context de monitorització de
processos de Forn d’Arc Elèctric (Electric Arc Furnace, EAF) en una acereria, considerem el problema
d’estimació simultània de la temperatura i la emissivitat espectral de mostres emissives calentes. Dissenyem
el nostre propi sistema de captura, integrant tres espectòmetres puntuals cobrint un ampli rang de l’espectre
Ultra-Violeta, visible i Infraroig, capaç de registrar senyal radiant entrant per un forat de 8cm de diàmetre
localitzat fins a 20m de distància. Llavors definim un model físicament precís de transferència radiant, incloent
efectes d’absorbció atmosfèrica, de la funció de transferència òptica del sistema, així com de la temperatura
i emissivitat espectral de la mateixa mostra. Resolem aquest problema invers sense la necessitat de dades
anotades, mitjançant una aproximació Bayesiana basada en programació probabilística, que proporciona
estimacions de la distribució posterior sencera sobre les variables involucrades, consistents amb mesures de
nivell de laboratori.

Paraules clau: visió per computador, xarxes neuronals, aprenentatge auto-supervisat, transformació
d’imatge a imatge, programació probabilística

iv



Resumen

La irrupción masiva de las Redes Neuronales Convolucionales (Convolutional Neural Networks, CNN) en
visión artificial a partir de 2012 condujo a un dominio, en el ámbito de la interpretación de imágenes, del
paradigma consistente en un esquema de aprendizaje extremo-a-extremo totalmente supervisado sobre bases
de datos de imágenes de gran escala. Esta aproximación demostró ser extremadamente útil para la resolución
de innumerables tareas de visión artificial tanto clásicas como de nueva creación, con un rendimiento
predictivo sin precedentes —a menudo mejor que el de los propios humanos—, a costa de requerir grandes
cantidades de datos anotados por humanos y de recursos de computación, y de tener que descartar todo
nuestro conocimiento previo sobre la tarea en cuestión. Pese a que los métodos sencillos de aprendizaje por
transferencia, tales como el ajuste fino (fine-tuning), han logrado un impacto notable, su éxito se ve mermado
cuando la cantidad de datos anotados en el dominio de destino es reducida. Asimismo, el carácter no estático
de las fuentes de generación de datos deriva, con frecuencia, en desplazamientos de la distribución de los
datos que dan lugar a una degradación del rendimiento de modelos ya desplegados. En consecuencia, existe
una creciente demanda de métodos que puedan explotar tanto aspectos de conocimiento a priori como fuentes
de información adicionales a las anotaciones manuales de las imágenes durante el proceso de entrenamiento,
de manera que sean capaces de adaptarse a nuevos dominios que constituyen, si no un régimen de escasez de
datos, sí al menos un régimen de escasez de datos anotados.

La presente tesis aborda dicho escenario de ausencia total o parcial de datos anotados en tres problemas de
aprendizaje para mapeo imagen a imagen. En ella se hacen contribuciones en forma de varias aproximaciones
que se apoyan en nuestro conocimiento previo sobre diferentes elementos del proceso de formación de
imágenes: en primer lugar, presentamos un marco de trabajo eficiente (desde el punto de vista del uso de
datos) para la detección de borrosidad debida a desenfoque o movimiento, en base a un modelo capaz
de producir degradaciones locales sintéticas realistas. La propuesta se compone de tres implementaciones
(una auto-supervisada, una de supervisión débil, y una semi-supervisada), en función de la ausencia o
disponibilidad y de la naturaleza de las anotaciones humanas disponibles, y supera, en cuanto a resultados, a
alternativas totalmente supervisadas en varias configuraciones.

A continuación, empleamos nuestro conocimiento del dominio de la formación de imágenes en color
para recopilar así parejas de imagenes de entrada y objetivo para la tarea de reconstrucción de imagen
hiperespectral. Acometemos este problema haciendo uso de una CNN que, por primera vez, nos permite
explotar el contexto espacial y lograr resultados que suponen una avance en el estado de la técnica, dado un
conjunto de imágenes hiperespectrales limitado.

En nuestra última contribución al subcampo de los problemas de transformación de imagen a imagen en
condiciones de escasez de datos, presentamos la nueva tarea semi-supervisada de segmentación semántica de
vista cruzada con cero-pares: consideramos el caso de reubicación de la cámara en un sistema —frecuente en la
industria— de segmentación semántica monocular de pose fija, entrenado extremo-a-extremo y ya implantado.
Bajo la asunción de que se nos permite obtener un conjunto adicional de pares de imágenes sincronizadas
pero no anotadas de nuevas escenas desde ambas ubicaciones de cámara, presentamos ZPCVNet, un modelo
y procedimiento de entrenamiento que posibilita, en tiempo de inferencia, la generación de predicciones
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semánticas densas, tanto en el marco de referencia de la pose original como en la de destino. La inexistencia
de bases de datos públicas adecuadas para poder desarrollar este planteamiento nos condujo a la creación de
MVMO, una base de datos de gran escala de imágenes Multi-Vista y Multi-Objeto, renderizadas mediante
path tracing, y dotada de anotaciones en términos de segmentación semántica para cada vista. Esperamos que
MVMO estimule futuras investigaciones en las áreas, ahora subdesarrolladas, de la segmentación semántica
multi-vista y de vista cruzada.

Por último, en un ejercicio de investigación aplicada de utilidad directa en el contexto de monitorización
del proceso en una planta de acería con horno eléctrico de arco (Electric Arc Furnace, EAF), consideramos
también el problema de estimación conjunta de la temperatura y la emisividad espectral para muestras
emisivas calientes distantes. Para ello, diseñamos e integramos nuestro propio dispositivo, el cual incorpora
tres espectrómetros puntuales que cubren, en conjunto, un amplio rango espectral en las zonas ultravioleta,
visible e infrarroja. El equipo es capaz de registrar la señal de radiancia procedente de un punto de 8 cm de
diámetro ubicado a 20 m de distancia. Asimismo, formulamos un modelo de transporte radiativo riguroso
desde el punto de vista de la física, que contempla los efectos de la absorbancia atmosférica, de la función de
transferencia óptica del sistema, y de la propia temperatura y emisividad espectral de la muestra. Resolvemos
este problema inverso sin requerir para ello dato anotado alguno, haciendo uso de una aproximación bayesiana
apoyada en un modelo de programación probabilística que ofrece estimaciones de la distribución posterior de
las variables aleatorias definidas que son consistentes con las mediciones realizadas en un entorno controlado
y con equipamiento de laboratorio.

Palabras clave: visión por computador, redes neuronales, aprendizaje auto-supervisado, mapeo imagen
a imagen, programación probabílistica
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Laburpena

Sare Neuronal Konboluzionalak (Convolutional Neural Networks, CNN) 2012tik aurrera ikusmen artifizialean
modu masiboan erabiltzen hasi izanak, eskala handiko irudi datu-baseen bidezko muturretik muturrerako
guztiz gainbegiratutako ikasketa paradigma erakarri zuen irudien interpretazioaren esparrura. Hurbilketa
hori oso baliagarria izan zen ikusmen artifizialeko arazo ugari —bai klasikoak zein sortu berriak— ebazteko
aurrekaririk gabeko errendimendu prediktiboarekin, sarritan gizakiena bera baino hobeagoa. Horren truke,
konputazio-baliabide anitzak eta gizakiok etiketatutako irudi kopuru handiak bereganatzea beharrezkoa
bihurtu zen, bai eta arazoari buruz aldez aurretik genuen ezagutza guztia baztertzea ere. Transferentzia
bidezko ikaskuntza-metodo sinpleek, hala nola doikuntza finak (fine-tuning), inpaktu nabarmena lortu duten
arren, haien arrakasta murriztu egiten da helmuga-eremuan etiketatutako datuen kopurua txikia denean. Era
berean, datu-iturburuen izaera ez-estatikoak maiz datuen banaketaren desplazamendua dakar ondoriotzat,
eta honek, era berean, dagoeneko lanean dabiltzan ereduen errendimendua degradatzen du. Ondorioz,
entrenamendu-prozesuan nahiz gure a priori-zko ezagutza zein irudien eskuzko etiketen informazio iturburu
osagarriak ustia ditzaketen metodoen eskaerak gora egin du azken garaiotan; era honetan, datu-eskasiaren
erregimena —edota, behintzat, etiketaturiko datu-eskasiaren erregimena— kontsidera daitezkeen eremu
berrietara egokitzeko gai izango direlakotan.

Tesi honek etiketaturiko datuen eskasiaren edota erabateko faltaren eszenatokia jorratzen du iruditik
irudira mapatzeko hiru ikasketa arazotan. Bertan, irudiak eratzeko prozesuaren hainbat elementuri buruz
aurretik dugun ezagutzaz baliatzen gara zenbait kontribuzio aurkezteko: Lehenik eta behin, metodo efiziente
bat aurkezten dugu (datuen erabileraren ikuspegitik) optika eta mugimenduaren ondoriozko desfokuratze
efektuak detektatzeko, degradazio lokal sintetiko errealistak sortzeko gai den eredu batean oinarrituta. Hiru
inplementaziok osatzen dute aipatutako metodoa (bat auto-gainbegiratua, bat gainbegiratze ahulekoa, eta beste
bat erdi-gainbegiratua), eskuragai dauden etiketen eta haien izaeraren arabera, eta hainbat konfiguraziotan
hobetzen ditu guztiz gainbegiratutako anternatibek lorturiko emaitzak.

Jarraian, koloretako irudien eraketaren inguruko gure ezagutza erabiltzen dugu sarrerako eta aurreikusi
beharreko irteerako irudi bikoteak gauzatu, eta horri esker irudi hiperespektralak berreraikitzeko problemari
heltzeko. Horretarako, CNN bat erabiltzen dugu eredu gisa, zeinek, aurreneko aldiz, testuinguru espaziala
ustiatzeko aukera emango digun, eta, honen bitartez, arte-egoeraren aurrerapena dakarten emaitzak lortu,
irudi hiperespektral multzo mugatu bat besterik ez izanik eskuragai.

Datuen urritasuneko baldintzetan iruditik irudirako bihurketa arazoen azpieremuari egiten diogun azken
ekarpenean, ataza erdi-gainbegiratu berri bat aurkezten dugu, bikote gabeko ikuspegi gurutzatuko segmentazio
semantikoa izenez: jada ezarrita dagoen muturretik muturrera entrenatutako segmentazio semantiko sistema
monokular batean (industrian maiz aurki dezakeguna) kamera birkokatzeko beharra azaltzen zaiguneko
kasua hartzen dugu kontutan. Kontestu honetan, demagun bi kamera-kokapenetatik sinkronizatutako bai-
na etiketatu gabeko eszena multzo berri baten irudi pare gehigarri bat lortzea baimentzen zaigula. Hau
suposatuta, ZPCVNet aurkezten dugu, eredu eta entrenamendu-prozedura bat, inferentzia-garaian pixel
bakoitzeko aurreikuspen semantikoak sortzea ahalbidetzen duena, bai jatorrizko ikuspuntuko erreferentzian,
zein helmugakoan. Planteamendu hori garatu ahal izateko datu-base publiko egokirik ez zegoenez, MVMO
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sortu genuen, ikuspuntu anitzeko eta objektu anitzeko eskala handiko irudi datu-base bat, alegia, path tracing
teknikaren bidez errenderizatua, eta ikuspegi bakoitzerako segmentazio semantikoko etiketekin batera argitara
ematen dena. Espero dugu MVMO-k etorkizunean ikerketa berriak sustatuko dituela gaur egun azpigaratuta
dauden ikuspegi anitzeko eta ikuspegi gurutzatuko segmentazio semantikoaren arloetan.

Azkenik, arku elektrikozko labea (Electric Arc Furnace, EAF) duen altzairutegi bateko prozesua moni-
torizatzeko testuinguruan zuzenean ezarri genezaken ikerketa aplikatu batean, urrutiko lagin igorle beroen
tenperatura eta emisibitate espektralaren aldi bereko estimazioaren arazoari heltzen diogu. Horretarako, gure
gailu propioa diseinatu eta garatzen dugu, hiru espektrometro puntualez osatua, guztien artean espektro-
tarte zabala hartzen dutelarik barne, tarte ultramore, ikusgai eta infragorrian. Aipaturiko gailua gai da 8
cm-ko diametroko zirkulu batetik datorren erradiantzia-seinalea erregistratzeko, 20 m-ko distantziara. Era
berean, fisika aldetik zehatza den transferentzia erradiatiborako eredu bat formulatzen dugu, absorbantzia
atmosferikoaren, sistemaren transferentzia optikoaren funtzioaren eta laginaren tenperatura eta emisibitate
espektralaren beraren efektuak jasotzen dituena. Alderantzizko problema hau ebazten dugu, horretarako ino-
lako etiketaturiko daturik behar gabe. Horretarako, programazio probabilistikoko eredu batean oinarritutako
hurbilketa bayestarra erabiltzen dugu, definitutako ausazko aldagaien ondorengo banaketaren estimazioak
eskaintzen dituena, ingurune kontrolatu batean laborategiko ekipamenduaren bidez jasotako emaitzekin bat
datozenak.

Gako-hitzak: ikusmen artifiziala, neurona-sare artifizialak, ikasketa auto-gainbegiratua, iruditik irudira-
ko transformazioa, programazio probabilistikoa
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1 Introduction

As you are reading this sentence, each human on earth is generating 8 MB of data [51]. As a result of the
social media, the ongoing digital transformation of the industrial processes and the increasingly digital nature
of consumer products, it is expected that, by 2025, more than 200 zettabytes of data will be in cloud storage
around the globe [173] and that 463 exabytes of them will be generated on a daily basis [230]. We are
therefore witnessing a constant redefinition of what we consider to be Big Data, amid claims of data being
the new oil [103].

In this context, only a small fraction of this generated data is currently being processed, analyzed
or even stored [214]. Artificial Intelligence (AI) is called to be the missing piece that will allow us to
actually exploit such vast amount of information, leveraging the use of Deep Neural Networks (i.e. Deep
Learning [18, 86]), and transform the raw data —petroleum— into actual oil. In the field of computer
vision, it was the aforementioned ubiquitous availability of digitized and labeled data, together with an
unprecedented availability of parallel computing resources (materialized as mass market oriented, relatively
cheap GPUs-Graphics Processing Units) and the slow but incremental progress in the development of robust
training algorithms that enabled the ongoing deep learning revolution.

The mass irruption of Deep Convolutional Neural Networks (CNNs) in computer vision can be exemplified
by the ILSVRC2012 breakthrough [130], in which, for the first time, a CNN-based model beat all other
contenders in the Imagenet Large Scale Visual Recognition Challenge [229] by a considerable margin,
although its theoretical roots can be traced back at the very least to the late 90s. The use of CNNs to
solve image understanding tasks (such as e.g. image classification), represented a paradigm shift with
respect to the era of classic computer vision, which was characterized by pipelines comprising hand-crafted
feature extractors (i.e. descriptors) transforming the input image in a compact representation of it, and a
subsequent machine learning classifier. Under this schema, such descriptors were designed so that they
yielded discriminative representations, distinct for input samples belonging to different classes and similar
when describing samples within the same category, while remaining invariant to nuance factors of variation
within any single class (e.g. illumination, camera pose, etc.), thus posing a trade-off between both desirable
aspects. Remarkably, these handcrafted descriptors were designed so that, when addressing such trade-off,
they would leverage what we knew about the domain of application, about the physical processes of the world
being represented or the image capturing process. In other words, they would encode our prior knowledge.
For instance, when designing descriptors required to obtain good representations of the colors in an image,
these were required to be invariant to the chromaticity of the main illuminant in the scene —so that the
overall algorithm would be robust to illuminant changes [77]. In order to do so, we had to leverage our best
knowledge about the physics of the interaction of light with object surfaces, formalized, e.g. as a reflection
model [235].

Contrary to this approach, deep neural nets [139] operate by replacing both elements —feature extractor
and machine learning classifier— by one single model, which is trained directly on pairs of images (raw
pixels) and ground truth labels. During the training process, network coefficients are automatically adjusted
—through a process known as stochastic gradient descent [120, 219], and based on the backpropagation
algorithm [140]— so that the errors of the predictions made by the model are minimized. While doing so, the
neural net learns to extract hierarchical representations (i.e. features) of every input image, so that higher
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level features (which are semantically more meaningful and compact) are composed of lower level ones.
This end-to-end fully supervised learning approach over large-scale annotated datasets yielded excellent

results and proved to be extremely useful at solving a myriad of classic and new computer vision tasks with
unprecedented performance, at the expense of (i) high computational requirements (ii) the need for vast
amounts of human-labeled data and (iii) the disposal of all of our previously acquired prior knowledge on
the task being addressed. In fact, such solutions have consistently been beating traditional workflow-based
shallow approaches in almost every computer vision task. Likewise, they allowed addressing new tasks that
were not even viable up until the appearance of these techniques, even surpassing human performance at
some of them.

However, in the last few years, an emerging notion has arisen, that the manual annotation of such large
amounts of data might not be the best or even a desirable path [141]. Even though simple transfer learning
methods (such as fine-tuning a large network pretrained on a large, labeled dataset onto a smaller dataset from
a different domain [285]) have achieved remarkable impact, their success when the amount of labeled data in
the target domain is small is limited. The data generation sources are not static: cameras evolve, industrial
environments in which images are captured are subject to quick modifications, models trained from footage
from a certain city are deployed in another country, and the resulting shifts in the underlying pixel distribution
statistics render the original annotations —which may have taken a big effort to be created— obsolete quickly.
In this context, it is becoming increasingly clear that there is a demand for methods that can exploit elements
of prior knowledge and sources of information other than the manually generated ground truth annotations of
the images during the network training process, so that they can adapt to new domains that constitute, if not a
small data regime, at least a small labeled data regime.

1.1 Background
In this next section, we elaborate on some of the areas of research that have recently emerged around the need
to train neural networks for domains with only little labeled data.
Exploiting synthetic data. Right at the intersection between the fields of computer vision and computer
graphics, the use of synthetically generated data to train deep neural networks has shown to be one very
promising approach to circumvent the lack of extensive labeled ground truth. The ongoing rise of the
data-centric AI movement [175], which advocates for a dramatic increase in the efforts devoted to obtaining
high-quality datasets, as opposed to the current algorithm-centric approach, is also aligned with this view.
In fact, the use of 3D modeling software such as Blender [44], or 3D game engines (e.g. Unity [115],
Unreal [204], or GTA [217]) allow for generating a virtually infinite set of training image and corresponding
pixel-perfect, error-free ground truth pairs while reducing the risk of dataset bias issues [178] present in
real-world datasets. Furthermore, synthetic data generation enables an extensive coverage of long tail events
or corner cases that would be hard to capture through conventional real-world image gathering. Given an
important upfront cost of 3D-modeling a scene —or that of automating its construction itself [88]—, the
synthetic approach can produce multi-modal ground truth labels at minimal cost.

The main drawback, on the other hand, of this synthetic pathway (even in the case of photo-realistic, path-
tracing based workflows) lays in the distribution shift between the synthetic and the real world. As a result,
this transition of the synthetically-trained model to the real world production environment, typically leads to a
significant performance drop. Several approaches have been proposed to try to narrow this gap: different
variants of domain adaptation techniques in both unsupervised and semi-supervised flavors [268] have
shown to help, while recent research hints at the potential prominent role of diversity of scene appearances
(e.g. illumination, camera pose, surfaces, etc.) at bridging the gap [255], while downplaying the effect of
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photo-realism for some image understanding tasks [257].
On the other hand, the recent rise of high resolution deep generative models [85, 206] paved the way

towards their potential use for synthetic dataset construction [110] as an alternative to the aforementioned 3D
rendering workflows. The inherent difficulties of adversarial training and issues related to diversity, such as
mode collapse [9, 165], are still obstacles to the full development of this approach.

All in all, the availability of synthetic data and labels for training or pretraining becomes of paramount
importance when dealing with dense prediction tasks, such as semantic or instance segmentation, or depth
estimation. In this context, the time required to manually annotate each image renders the process hardly
scalable. Furthermore, 3D annotations (such as 3D bounding boxes or 6D poses [231] are even harder to
obtain over real world input.

In this thesis, we make use of synthetically generated data of diverse forms in Chapters 2, 3, 5 and 6.
Deep image-to-image translation. The task of image-to-image translation can be better thought of as an
abstract super-task encompassing a number of different computer vision problems that can be modeled under
this scheme. In essence, we want, given an image-shaped input, to obtain an output with the same spatial
shape as the input and one or more channels, representing some dense prediction defined with pixel-wise
resolution, so that we can observe its spatial variations. The meaning and formatting of such outcome is
dependent on the specific task being tackled. In this thesis we will consider several image-to-image settings:
(i) blur detection (Chapter 2) [238] aims at spatially localizing the blurred parts of an input image and
producing real-valued output blur maps, which can be then exploited by downstream algorithms for further
processing (e.g. deblurring); (ii) in RGB to HSI (HyperSpectral Image) reconstruction (Chapter 3) [6], the
output comprises as many real-valued dense prediction channels as those given by the spectral sampling
rate inherent to the available capture devices (typically a few tenths), i.e. each pixel represents a spatially
localized spectrum (normally representing the spectral reflectance or radiance of the depicted object at
those coordinates); (iii) semantic segmentation (Chapters 5/6) [155] predictions can be represented by a
color-indexed image with a single channel of integers (each representing a class).

Many of these tasks are often approached through a common base of encoder-decoder based CNN
architectures [12]. As a consequence, improvements over the state of the art in one of the fields can be, to
some extent, easily transferred to other image-to-image translation problems. The massive adoption of the
U-Net architecture [223] across domains and tasks as baseline architecture illustrates this. In the mentioned
encoder-decoder scheme, the encoder is typically conceived similarly to an image classification network,
except for its last few layers in charge of converting the predicted scores into a hard class decision. This
module takes an image-like input (i.e. high spatial resolution with just three channels in the RGB case) and
produces as output a very compact, semantically meaningful representation of it (i.e. a code) which we refer
to as bottleneck features, latent space or latent representation. Meanwhile, the decoder takes such code
and expands it back to the original resolution while containing the desired prediction. Although having
access to the semantically rich latent features enables multiple forms of operation with them, thus enabling
e.g. plausible semantic image editing operations [237], open challenges remain to this respect, such as the
generation of a features space with metric properties [174] or one in which different meaningful factors of
variations are disentangled and identified [1], facilitating precise modifications on the produced output.
Incorporating prior knowledge. The last few years have witnessed an increasing effort from the computer
vision —and, in broader terms, from general machine learning— communities to overcome the large scale,
fully supervised end-to-end paradigm in deep learning by incorporating back into the models part of the
prior knowledge we have about the specific domains under study [53]. The rationale behind this so-called
theory-guided data science [116] is two-fold:

First and foremost, including constraints that reflect on our understanding of natural physical processes
—normally formalized as mathematical models that have been extensively proven— can help our black box
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deep learning models trained through gradient descent reduce the search space of solutions [227]. This is of
particular interest whenever they are forced to deal with small (annotated) data regimes.

Moreover, there is no universal approach for the inclusion of such inductive biases into the training
process, but in certain cases this can be materialized in the form of specific backpropagation-ready modules
of the deep architectures reproducing the behavior of such physical processes [177]. While doing so, these
modules shed light into the so-called black box and act as interpretable elements that can even serve as means
to gain new insights of the domain [34].

In all fairness, CNNs themselves are all but free of inductive biases: convolutional layers encode our
strong beliefs on the stationary nature of natural images across the spatial dimensions, and our shared wisdom
that the coefficients learned in the form of compact filters are valid as we apply them throughout the different
locations within the image (i.e. translation invariance of the learned features). This is, indeed, the single
major assumption and design constraint that has enabled the revolution-scale progress of the field of image
understanding and computer vision during the last decade. Deep Convolutional Neural Networks represent a
sweet spot in the trade-off between the size of the dataset available for training (in the order of a few million
image-label pairs [229] for image classification) and the generality of the employed model (or, conversely,
the magnitude of the restrictiveness derived from the inductive biases hard-coded in it). And yet, the most
recent advances in the field, namely Transformers [59], directly imported from the NLP (Natural Language
Processing) community [262], hint at the disposal of the convolutional operations, as the availability of even
larger-scale datasets (e.g. JFT-300M [247]) allows for more general models, solely constructed on top of
self-attention mechanisms.

All in all (and whatever the underlying deep architecture), when operating in the small data regime,
solutions that, by somehow encoding inductive biases, are able to reduce the solution search space can greatly
benefit the vast majority of computer vision tasks that cannot leverage such extra-large datasets. A number
of distinct approaches have been attempted so far. Some of them focus on modifying the formulation of
the loss function with terms that favor solutions that are plausible from the perspective of the domain being
modeled (e.g. fluid dynamics [122]). Knowledge distillation through the use of teacher-student models is
another popular mechanism to transfer external knowledge to a deep student network [98]. Recent works
propose a hybrid approximation to the problem, with the support of Graph Neural Nets (GNN) complementing
the shortfalls of an incomplete and biased probabilistic graphical model acting as generative model of an
underlying physical process [73]. As mentioned before, we can find a wide range of methods encoding
our previous understanding of the world as specific modules within the architecture itself from a number
of subfields, e.g. multiple view geometry for the construction of multi-view consistent features [95], or the
image capture process in a device from the spectral point of view [177].

While the previous methods focus their efforts on the model itself, another family of techniques put
their emphasis on the training data, so that it is the weights in the model that encode this knowledge after
training. Many of them are based on the production of simulations of the physical processes under study that
can serve to pre-train our model, then to be fine-tuned over real observations [168] or subject to a domain
adaptation process [194]. The whole field of synthetic image generation through 3D rendering for dataset
construction may well fall within this category: our prior knowledge on plausible scene layouts will be thus
contained in the logic for the construction of the 3D scenes, while photometrically consistent physics-based
ray-tracing renderers take care of the interaction of light and matter. The 3D rendering workflow provides
very complete image formation models that can be exploited for procedural dataset construction. However,
often it is not necessary to go that far, and having physically consistent models for specific parts of the image
formation process —particularly so for the steps that can introduce degradations in the image e.g. noise,
blur, etc.— allows for the construction of datasets from existing images, that can be used in the context
of inverse problems modeling, i.e. those where, given an observation (e.g. captured image, or magnitude
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measured by a sensor), we would like to obtain the real value of the magnitude being captured, the original
form of a captured scene (i.e. without the degradations inherent to the capture process (e.g. deblurring [100],
denoising [252], superresolution [24], or hyperspectral reconstruction [8]), or an estimate of one or more of
the parameters of the capture process or of the observed event [198]. Closely related to this, but aside the
sphere of neural networks, the emerging field of probabilistic programming is a powerful tool to address
inverse problems provided that we can accurately model the data capture process as mathematical equations.
Notably, probabilistic programming provides an unsupervised framework that leverages Bayesian theory and
Markov Chain Monte Carlo (MCMC) sampling to tackle these tasks without the need to learn a model, and
has been successfully employed in a variety of topics, e.g. astronomical parameter estimation [266], stock
market modeling [273] or scene understanding [132].

In this thesis, we leverage different ways of incorporating prior knowledge to the model training workflow,
either for synthetic data generation (Chapters 2, 3, 5) or to construct a physically consistent model of the
signal capturing process (Chapter 4).

1.2 Challenges
Based on our analysis of the state-of-the-art, we identified several challenges related to the topics highlighted
in section 1.1 which we will outline in this section.

1.2.1 Blur detection from few labeled images
The first domain in which we investigate data-efficient approaches to the image-to-image mapping problem is
that of blur detection under few labeled data. Image blur is an effect that alters the definition of a picture,
as a result of which there is a loss of detail in the affected regions. Unless when being used as conscious
component of a creative photographic process, it is regarded as an undesired outcome, as it negatively
impacts the perceptual experience. There are two main causes that lead to partially or fully blurred images:
defocus blur is caused by a non-punctual aperture of the camera-lens system, which projects real world
points onto non-punctual circles of confusion in the sensor. Motion blur, on the other hand, is the result of
either the camera or the subjects of the scene moving during the duration of the exposure. The task of blur
detection aims at accurately segmenting the blurred areas of a given image, independently of their nature. The
attained outcome may then be leveraged to tackle additional downstream tasks in diverse settings, such as
computational photography (e.g. for defocus blur magnification), as a proxy task for other dense predictions
that correlate well with it, such as semantic object segmentation, depth estimation or saliency prediction.

As is the case in many other subfields of computer vision, recent deep learning-based methods have been
approaching the blur detection problem by learning an end-to-end mapping between the blurred input and a
binary or grayscale mask representing the localization of its blurred areas. Nevertheless, as opposed to many
of those other tasks, in which the irruption of fully supervised CNN-based methods trained on large scale
data elicited an enormous disruption in the state of the art in terms of predictive performance, blur detection
experienced a relatively modest performance gain from this approach [121, 159, 187, 287, 291, 294, 295].
A number of factors exist that directly impact the effectiveness of this approach. Most notably, the main
bottleneck hindering the exploitation of its full power of CNNs is the absence of large enough and varied
datasets with pixel-wise annotations of presence of blur degradation. Several recent efforts have tried to
partially address this gap [238,291,294,295] by contributing with novel datasets; however, their scale is orders
of magnitude below that of other areas in computer vision [46, 298]. Some of them are also limited in scope
and gather only samples from one of the blur variants. At the root of this situation lies the inherent difficulty
of producing accurate manual segmentations of blurred regions, which often results in labor-intensive and yet
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Figure 1.1: Two samples of images partially affected by motion blur (top) and defocus blur (bottom), and
their corresponding human-annotated ground truth blur localization masks from Shi’s dataset [238]. As can
be seen, mask boundaries are subject to the arbitrary criterion of annotators.

poor quality annotations. Except for images exhibiting a clear main subject vs. blurred background separation
(which represents one of the abovementioned creative tools for photographic composition), blur intensity is
a continuous magnitude in nature. Therefore, producing ground truth annotations through binary masks is
an oversimplified model for blur presence most of the time, with hand-drawn boundaries placed at arbitrary
locations and subject to the annotator’s criterion (see Fig. 1.1).

From the purely algorithmic point of view, additional factors can also explain the moderate advances
in the field. At its lowest level, fundamental ambiguities exist between out-of-focus pixels in an image and
regions of the image that depict flat surfaces or smooth edges. Scale-ambiguity refers to the inherent difficulty
of inferring the level of blur at one single scale [238]. One final challenge relates to the dependence of our
perception of sharpness of an image on the image size and resolution [258, 263]. These conditioning factors
are often ignored in the design of end-to-end CNN-based solutions in the field, which, to some extent, explain
their limited success.

In this thesis, we investigate several alternatives to the end-to-end fully supervised deep black box
approach to the problem of blur localization in natural images, in order to circumvent the scarcity of reliably
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Figure 1.2: Illustration of the hyperspectral image reconstruction task: given an input RGB image, we must
estimate a full spectral radiance for each pixel.

annotated large datasets in the field.

1.2.2 Exploiting context for hyperspectral image reconstruction from RGB
The second field in which we address training under few or absent ground truth data for image-to-image
mapping is hypespectral image reconstruction. Hyperspectral signal reconstruction (also referred to as spectral
super-resolution) aims at recovering the original spectral input that produced a certain trichromatic (RGB)
response from a capturing device or observer (Fig. 1.2). Without any deeper spectro-photometric modeling of
the problem, one can think of it as the task of recovering a correlate for the spectral radiance associated to each
input sample. Given the heavily underconstrained, non-linear nature of the problem, traditional techniques
leverage different statistical properties of the spectral signal in order to build informative priors [6] from real
world object reflectances for constructing such RGB to spectral signal mapping.

However, a number of challenges still remain open when dealing with extending the task from traditional
punctual sample reconstruction to full scenes, even if we limit our scope to the visible range of the spectrum
(i.e. around 380− 780nm): First, the acquisition of hyperspectral images represents a highly complex
procedure on its own. Most HyperSpectral Imaging systems are based on either spectral or spatial scanning
of the scene [69], through narrowband variable filters or push-broom methods that capture one hyperspectral
line of pixels at a time. This limits their usefulness for capturing natural images of non perfectly static
subjects. Even though a few versions of snapshot (i.e. matricial) multi-spectral capture devices —relying
on repeated mosaic-like local filter-array patterns— are readily available as commercial systems, these are
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Figure 1.3: Left: Illustration of an Electric Arc Furnace (EAF) during tapping of molten steel into a vessel,
and cross-section of a furnace showing the electrodes. Right: a worker manually checks the temperature using
a thercocouple attached to a long probe while slag is poured. Image: Deutsche Fotothek (CC BY-SA 3.0 DE).

still restricted to a very reduced number of bands (up to 25 [27, 75]). This has traditionally dragged the
creation of large enough and diverse hyperspectral image datasets [6, 8, 70, 176], that could be employed
for HSI-based tasks through data-driven approaches, such as end-to-end deep learning. In particular, HSI
recovery from RGB data has been further limited by the additional difficulty of capturing simultaneous
co-registered RGB and HSI pairs. This explains the absence of methods in the literature combining spatial
and spectral information while tackling RGB to HSI reconstruction in a supervised framework. Ideally, given
a good enough reconstruction model comprising a wide set of priors about the spectral features of natural
objects we could use standard RGB cameras to produce high spectral and spatial resolution hyperspectral
cubes as a cheap alternative to current expensive multi/hyperspectral capturing devices and feed downstream
applications with the super-resolved spectra.

In this thesis, we aim to leverage synthetic, physics-based generation of (RGB , HSI ) pairs to perform
a CNN-based end-to-end learning of a hyperspectral image reconstruction mapping over a medium-sized
dataset that, for the first time, leverages spatial context as well as spectral information.

1.2.3 Temperature-spectral emissivity separation of hot samples
A third area in which we make contributions under the small labeled data regime assumption is that of
remotely estimating temperature and spectral emissivity properties of hot targets in severe industrial settings.
Steelmaking plants relying on Electrical Arc Furnaces (EAF) are some of the harshest industrial environments
out there. The first and most important step of the steel manufacturing procedure consists, in essence, in
melting large volumes of ferrous scrap by forming an electric arc on it (Fig. 1.3, left). Each plant can produce
a range of different steel types, and the outcome of the process is also dependent upon the composition of
the raw scrap. Therefore, a continuous adjustment must be performed in the furnace through the addition of
different chemical compounds. Consequently, there is a need to monitor a number of process variables (e.g.
temperature) and the composition of both the steel and, especially, the slag (a by-product of the process that

8

https://en.wikipedia.org/wiki/File:Fotothek_df_n-08_0000297.jpg
https://creativecommons.org/licenses/by-sa/3.0/de/deed.en
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comprises the undesired elements from the scrap and, when in molten state, serves as a mean for stabilizing
the electric arc and improving its efficiency).

To this respect, the Holy Grail of EAF-based steelmaking would be achieving a continuous, online, real-
time monitoring of both slag temperature and its chemical composition [192]. However, this is far from today’s
state: in current practice, such chemical composition analysis is run offline through the manual acquisition
of a molten sample of slag, its preparation and subsequent analysis in a laboratory X-ray fluorescence
spectrometer [197]. Likewise, temperature is manually sampled through the introduction of a thermocouple
once or twice during each casting [20] (Fig. 1.3, right).

One giant leap towards that final goal would be that of obtaining remote estimations for some of
those variables, rather than physically collecting samples and measurements. Nevertheless, an accurate
remote measurement of sample temperature at the range of temperatures taken into consideration (around
800−1700◦C ), even with a commercial pyrometer, requires as additional input a value for the emissivity of
the sample, which is also unknown, since it depends on the composition; as a result, we face an ill-posed
problem. At the same time, the closest correlate one can aim at for the chemical composition of the liquid
slag (the underlying steel is occluded by the slag and can only be accessed physically) in a context of hot
remote samples (where the reflected component is largely masked by the dominant emissive component)
would be its spectral emissivity, provided that it was obtained on a wide enough range of the electromagnetic
spectrum, preferably comprising ultraviolet, visible, and IR bands up to the far IR zone.

And yet, one cannot simply directly measure the spectral emissivity of a hot, remote sample. From
a radiometric perspective, we can only capture -through a spectrometric device- a noisy observation, i.e.
a proxy of the spectral radiance of such sample, which, at the considered temperatures, is fundamentally
dominated by the emissive spectrum of the black body and further affected by unknown and highly variable
atmospheric attenuation and the noise and degradations inherent to the optical capturing device. In addition,
no spectrometer covers on its own the whole aforementioned spectral range of interest. Should we want to
derive the spectral emissivity of the source, we would first need to secure a good estimate of the sample
temperature, as the spectral emissivity is defined as the ratio of the spectral radiance of a sample to that of a
black body at the same temperature as that sample [275]. Furthermore, Planck’s law evidences the exponential
dependence of such back-body radiance with the value of the temperature, thus any deviation in its estimation
would result in large errors in the predicted spectral emissivity. This is, in essence, a blind inverse problem
again, largely unmanageable from a pure supervised data-driven perspective, and a heavily under-constrained
one, as there are many combinations of temperature, atmospheric attenuation variables and spectral emissivity
profiles that could potentially result in any single noisy measurement of the spectral radiance.

In this thesis, we aim to resolve the lack of suitable signal capturing hardware for EAF environments and
circumvent the absence of exploitable datasets for end-to-end learning of a temperature-spectral emissivity
separation model for distant hot samples. We instead approach the inverse problem in an unsupervised way,
leveraging a physically sound forward model of the signal capture process and a Bayesian approach on the
acquired data.

1.2.4 Cross-view semantic segmentation for unlabeled views
Finally, the last image-to-image mapping domain that we focus on in this thesis under constrained labeled
data scenarios is the particular case of semantic segmentation in multiple-view setups. Semantic segmentation
is one of the computer vision tasks that has most prominently benefitted during the last years from the
end-to-end supervised learning approach enabled by CNN models [236], growing from being hardly within
reach before up to current highly reliable models [37, 223, 297]. However, certain scenarios still pose relevant
challenges:
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Figure 1.4: Left: object-cluttered 3D scene captured from a reference camera pose. Center: a complementary
camera pose featuring a close baseline with respect to the reference (e.g. those in commercial stereo rigs and
typical autonomous driving datasets) results in small disparities and little additional insight over the occluded
scene parts. Right: a wide-baseline complementary camera location could potentially provide a substantial
information gain over the imaged scene, but the fusion of information from both views and the production of
cross-view predictions are far from trivial.

• Multi-view semantic segmentation: single view semantic segmentation of complex, densely populated
scenes is hindered by self and inter-object occlusions that prevent accurate classification of the involved
objects, and it could greatly take advantage from additional viewpoints of the same scene. Nonetheless,
no trivial solution exists for this setup when baselines between cameras are wide.

• Cross-view semantic segmentation: although significant progress has been achieved lately on novel
view synthesis [162, 166, 210], the transfer of learned semantic features for inference across views on
wide baseline multi-object scenes remains an open research question.

Both fields represent exceptional opportunities to develop solutions that are able to combine our prior
knowledge from classic multiple view geometry [93] with the expressive power of contemporary deep neural
models. Still, the main inconvenience in this regard so far has been the non-existence of an adequate, large
scale image dataset of scenes comprising multiple objects captured from diverse, wide-baseline camera
locations (see Fig. 1.4) and with pixelwise semantic annotations. This lack can be largely explained by the
disproportionate cost of producing dense labels if compared to creating image-level annotations. Consequently,
we assess that data-efficient (e.g. semi/weakly/self/un-supervised) approaches to multi and cross-view dense
prediction tasks are called to provide significant advancements in these fields.

In this thesis, we attempt to draw attention to the overlooked fields of multi and cross-view semantic
segmentation by first providing the community with a useful dataset suitable for large scale data-driven
learning and embedding of multi-view geometry-related inductive biases. In addition, we define a new
multi-view dense prediction task and introduce a first data-efficient approach to handle it.
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1.3 Objectives and approach
Based on the analysis of the challenges identified in section 1.2 we define a selection of precise objectives to
be addressed in this thesis for each of the topics discussed above:

1.3.1 Blur detection from few labeled images
Following our assessment that the absence of large labeled blur detection datasets is the main impediment for
the development of the field, we define the following research objective:

Self-supervised blur detection through synthetic blurring of scenes: propose a self-supervised
framework to bypass the need for large-scale blur localization datasets. Study the combined
effectiveness of unsupervised object proposals and synthetic modeling of blur degradations to
produce augmented training data.

In Chapter 2 we quantitatively show the limitations of end-to-end fully-supervised approaches and propose
a self-supervised framework based on synthetically producing partial defocus and motion blur degradations
on images from an unrelated dataset without blur labels. We identify and resolve the issues derived from
this approach (e.g. halo artifacts) and we unfold the framework on three distinct instantiations with different
levels of supervision: (i) a weakly-supervised approach, in which semantic-segmentation ground truth object
masks are used as proxy for the image regions to be blurred, (ii) a self-supervised approach, in which we
leverage unsupervised object proposal techniques to produce multiple semantically plausible partitions of
image regions, acting as an implicit form of augmentation, and (iii) a semi-supervised approach, in which we
combine the latter with actual annotations from one of the few datasets devoted to blur detection. We show
that our framework improves state-of-the-art results for two distinct test datasets even without ever observing
any real blurred image, and that the addition of a small number of annotated images consistently outperforms
the fully supervised approach to the problem.

1.3.2 Exploiting context for hyperspectral image reconstruction from RGB
As we have previously highlighted, most of the existing works treat each sample independently, and there is a
void of approaches leveraging spatial information from the local vicinity of the RGB pixels when trying to
obtain high spectral resolution reconstructions of RGB images. Concretely, CNNs have never been proposed
for the task. Therefore, we propose the following research objective:

Spatio-spectral feature fusion for hyperspectral reconstruction: current approaches for RGB
to hyperspectral image recovery disregard the potentially useful information provided by nearby
pixels. Hence, we propose the use of a Deep Convolutional Generative Adversarial Network to
exploit the spatio-textural information from the local neighborhood while producing plausible
reconstructions.

Chapter 3 of this thesis focuses on the development of this approach. We pose hyperspectral natural image
reconstruction as an image to image mapping learning problem, and apply a conditional generative adversarial
framework to help capture spatial semantics. In order to overcome the lack of independently captured
RGB-HSI pairs, we synthetically produce the RGB versions of each of the original hyperspectral scenes taken
from the first medium-sized publicly available HSI image dataset (i.e. ICVL [6]). By applying well-known,
psycho-physically consistent models for color formation, we get sRGB versions of the scenes. The proposed
adversarial network system’s convolutional generator is in charge of performing the high resolution spectral
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recovery, while the discriminator assesses the plausibility of the reconstruction. In chapter 3, we quantitatively
show that we can actually benefit from the contextual information that the spatial dimensions can provide for
this task by training a deep adversarial dense regression network.

1.3.3 Temperature-spectral emissivity separation of hot samples
Given the enormous complexity of the stated final goal of achieving accurate online remote chemical
composition estimations for the hot slag in a steelmaking plant, we choose to focus on securing faithful
estimations for temperature and spectral emissivity, which remains an open research question. Consequently,
we target two of the identified open challenges, and address them in chapter 4:

Robust multi-spectrometer hardware system for remote spectral radiance acquisition: there
is a lack of adequate rugged commercial hardware able to obtain wide range remote spectral
radiance raw data from hot remote sources. Thus, we tackle the design and development of our
own capture device, which is required to provide fast, reliable and calibrated wide range radiance
readings over a reduced size spot from a safe distance from the EAF.

Section 4.3 describes the built portable device, which was conceived integrating the signal received from
three independent punctual spectrometers spanning the [0.2,12 µm] range. The device allows for accurate
radiance captures over a sample size of 12 mm at 20 m, which is achieved through a collimator and a laser as
aid for remote pointing. Critically, a thorough two-step calibration procedure is defined together with the
hardware design: a blackbody-based calibration of the spectrometer non-linearities, and an in-field calibration
with a calibration lamp to account for potential fiber misalignments and other unaccounted effects.

Self-supervised model for simultaneous temperature and spectral emissivity estimation: we
aim at defining and validating a method that can leverage a well-established radiative transfer
model within a blind inverse problem modeling framework without extensive available ground
truth, so that we are able to estimate both sample temperature and spectral emissivity over
captures obtained with the described hardware.

Section 4.4 shows the envisioned approach, which leverages the emerging paradigm of Bayesian proba-
bilistic programming to define a radiative transfer model describing the full emission and noisy capture process
in terms of probability density functions over the expected values of the key magnitudes involved. The model
comprises the emissive source emitting at an unknown temperature and with unknown spectral emissivity and
the spectral characterization of the capturing device, and accounts for the atmospheric attenuation induced by
unknown concentrations of the most influential gases to yield full distribution estimates for each of these
variables in quasi-real time.

The whole system and probabilistic model were validated under controlled conditions against laboratory-
grade equipment for spectral emissivity measurement, using two solid samples with well characterized, stable
spectral emissivities (namely alumina and boron nitride). The results and achieved specifications show the
suitability of both system and method, which were developed at Tecnalia for ArcelorMittal, for inline in-field
use for remote monitoring of the steelmaking process.

1.3.4 Cross-view semantic segmentation for unlabeled views
The conducted analysis of the state-of-the-art raised the problem of an absence of suitable, challenging
datasets that could be exploited for cross-view or multi-view dense prediction tasks. Hence, as our first
objective we choose to fill in this void:
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Multi-view, multi-object dataset for semantic segmentation: create a new synthetic path-
tracing based dataset, comprising scenes with multiple, varied objects per-scene and multiple,
wide-baseline views where each of them is annotated in terms of semantic segmentation. Release
the code and dataset to the community for public access.

In chapter 5, we justify, present and characterize MVMO (Multi-View, Multi-Object dataset): a synthetic
dataset of 116,000 scenes containing randomly placed objects of 10 distinct classes and captured from 25
camera locations in the upper hemisphere. MVMO comprises photorealistic, path-traced image renders,
together with semantic segmentation ground truth for every view. Unlike existing multi-view datasets, MVMO
features wide baselines between cameras and high density of objects, which lead to large disparities, heavy
occlusions and view-dependent object appearance. Therefore, we expect that MVMO will propel research in
multi-view semantic segmentation and cross-view semantic transfer. In section 5.4, we also provide baselines
that show that new research is needed in such fields to exploit the complementary information of multi-view
setups.

As a consequence of the nature of this thesis, which was developed in a part-time appointment while
executing industry-oriented projects in Tecnalia (see section1.4), we are particularly sensible to problems
arising in industrial environments. One of such scenarios would consist on the need for a relocation of the
camera in a trained and fully deployed monocular semantic segmentation system, which would most likely
result in a severe performance drop. Consequently, we pose the following additional research objective:

Semi-supervised cross-view semantic segmentation: define and validate a data-efficient ap-
proach for semantic transfer of dense predictions across wide-baseline views upon the event of a
forced camera-relocation.

In chapter 6 we address this by introducing the task of zero-pair cross-view semantic segmentation, in
which we assume that we can capture an additional set of unlabeled scene image pairs from original and
new camera poses. Under this setting, we present ZPCVNet, a model based on the joint training of a set of
encoder-decoders that are designed to have a common latent bottleneck representation. At inference time,
we can combine aligned encoder and decoders to obtain semantic segmentation results from the desired
viewpoints. In our experiments on the MVMO dataset we show that classic geometry-based baselines are
ineffective and that ZPCVNet outperforms these and other learning-based baselines by a large margin.

1.3.5 Relation between chapters
This thesis touches upon several applications of different machine learning techniques. To help better
understand the points in common among the addressed problems, we provide Table 1.1. All chapters in this
thesis address the problem of the scarcity of annotated data as an alternative, more realistic scenario than the
end-to-end large scale dataset paradigm. Other than that, Table 1.1 also covers additional characteristics of
the proposed methods, which play a prominent role within each of the topics, and are discussed herein.

Three of the chapters pose their respective problems as learning of different image-to-image mapping
functions. Another recurring theme is the learning strategies applied in the thesis. The small-data scenario
is faced by the use of self-supervised or semi-supervised learning approaches. Each of them makes use of
diverse pieces of acquired prior knowledge. Finally, also in most of the chapters, this allows for synthetically
generating the input data and/or the corresponding ground truth and learning from them.
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Chapter Small data Technique I2I SfS/SmS PK/PB Synthetic

Ch.2 Few/Auto labels CNN Yes: 1CR Yes: SfS Yes: Blur GT
Ch.3 Auto labels CNN Yes: MCR Yes: SfS Yes: Color I
Ch.4 No labels PP No: PM Yes: SfS Yes: RT -
Ch.5&6 Few labels CNN Yes: SS Yes: SmS Yes: PT I, GT

Table 1.1: Summary of the characteristics of the contributions covered in this thesis. Chapter: Ch.2: Blur
detection from few labeled images. Ch.3: Exploiting context for hyperspectral image reconstruction from
RGB. Ch.4: Temperature-spectral emissivity separation of hot samples. Ch.5: Multi-view, Multi-object
dataset. Ch.6: Cross-view semantic segmentation for unlabeled views. Technique: CNN: Convolutional
Neural Networks. PP: Probabilistic Programming. I2I: Image-to-Image mapping. 1CR: 1-Channel Regression.
MCR: Multi-Channel Regression. PM: Punctual Measurements. SS: Semantic Segmentation. SfS/SmS: Self-
Supervised/Semi-Supervised learning. PK/PB: elements in the workflow that leverage Prior Knowledge or
Physics-Based modeling. Blur: model for blurred image formation. Color: model for color image formation
from spectral radiance. RT: Radiative Transfer model. PT: Path Tracing and 3D scene modeling. Synthetic:
data components generated synthetically through the mechanism shown in the PK/PB column. I: Input data.
GT: Ground Truth.

1.4 Industrial PhD at TECNALIA
In this section, we provide some context on the development of this thesis as an industrial PhD, with a remote,
part-time dedication at the CVC and a full-time position at Tecnalia, which is the industrial partner of this
thesis.

Employing a workforce of more than 1,400 people (44% women – 56% men) of 31 nationalities, Tecnalia
is the largest private center of applied research and technological development in Spain, a benchmark in
Europe and a member of the Basque Research and Technology Alliance. Through R&D and Innovation,
Tecnalia aims at creating solutions that generate economic impact on companies, prosperity for the country
and value for society, in terms of quality of life and progress. Hence, it defines its mission as to “transform
technological research into prosperity”.

Born in 2011 from the fusion of eight sectorial centers located in the Basque Country, Tecnalia puts
forward a multi-sectoral and multi-technological proposal, following the assertion that today’s companies
need cross-sectorial and multi-technology responses to their global challenges, which are impossible to satisfy
without the hybridization of technologies. Tecnalia’s main scopes of action are: Smart Manufacturing, Digital
Transformation, Energy Transition, Sustainable Mobility, Personalized Health, Circular Economy and Urban
Ecosystem. From the perspective of its technological strategy, however, Tecnalia structures them into vertical
technologies (with an impact on a single market) and transversal technologies (which may have an impact on
more than one market).

Among the latter, the Computer Vision and Visual Interaction technology group’s Computer Vision
team focuses on developing advanced, primarily deep learning-powered image understanding systems for
applications in production-line quality control, bio-medicicine, agriculture, steelmaking or recycling industries,
among others. Remarkably, its activity is based on the analysis of not only conventional color images, but
of a wide range of image or punctual signal acquisition technologies, such as HSI, LIBS (Laser-Induced
Breakdown Spectroscopy), Raman and FTIR (Fourier Transform InfraRed) spectroscopy, thermography, OCT
(Optical Coherence Tomography), MPT (Multi-Photon Tomography), bright-field microscopy, THz, etc. This
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enables extending its scope to deal with material and process characterization objectives as well.
Tecnalia’s place within the R&D value chain, which is a reflection of its mix of private and both non-

competitive and competitive public funding, covers a long range from basic research to fully deployed turnkey
solutions in some cases. Consequently, there is a constant tension between the need for being at the edge
of the state-of-the-art and being able to yield fully functional implemented systems to the industry, as its
success is evaluated via both academic and pure market-driven performance indicators. Therefore, Tecnalia
encourages its employees to obtain a PhD on a relevant research topic. Currently, 18.1% of its employees are
doctors.

In this context, most of the present thesis was developed with funding from the SPRI-Basque Government’s
ELKARTEK program, but without an explicit link to any ongoing privately funded project. However, the
knowledge obtained from pursuing this thesis has proven to be useful for several projects within Tecnalia,
which also has seen a rising interest in deep learning —particularly so in data-efficient deep learning— from
the industry in recent years. Chapter 4 was a notable exception to this, as it directly describes the solution
conceived and implemented for one of the most prominent real-world problems currently faced by steelmaking
industry. This work also led to a European patent application being filed [196] covering its content.

In conclusion, while the part-time dedication and double affiliation regime posed additional challenges
on the development of this thesis, it also paved the way for a certain cross-fertilization of the purely
academic/industrial spheres, therefore yielding an enriched version of both activities.
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2
Self-supervised Blur Detection from Synthetically
Blurred Scenes*

2.1 Introduction
Image blur is a phenomenon that degrades the definition of an image, producing a loss of detail in the affected
regions. The two main causes leading to a fully or partially blurred image are (i) defocus blur, which is
inherent to a wide aperture optical image capturing device that projects scene points that are away from the
focus plane onto a non-punctual circle of confusion on the sensor and (ii) motion blur, which is caused by the
movement of either the camera (i.e. camera shake) or the imaged objects during camera exposure time. Even
if both defocus and object-motion blurs are sometimes sought-after as part of a creative photographic process
(e.g. to pop-out the subject or to evoking a sense of motion, respectively), most of the time blur is considered
as an undesired effect [291] or image artifact.

In any case, trying to localize blurred regions within an image (or, equivalently, achieving a segmentation
in terms of blurry/unblurred parts) is a useful task with a wide range of applications in computational
photography, e.g. defocus blur magnification [13, 81], image deblurring [74, 184, 239, 292], or camera focus
point or depth of focus estimation [81]. In addition, due the underlying correlation between blurred and
non-blurred areas within the same image, blur detection has been also applied in general computer vision
tasks, e.g. depth estimation [91], saliency prediction [57] or semantic object segmentation [195]. However,
blurred region segmentation is a challenging task, due to the fundamental ambiguities existing between the
out-of-focus pixels and the originally flat regions or smooth edges. Scale-ambiguity (i.e. the difficulty of
inferring the level of blur over one single scale [238]) and the dependence of the perception of sharpness on
the image size are additional challenges that affect the performance of current approaches.

A number of previous works have investigated blur localization directly or implicitly from the feature
engineering and physical modeling approaches, either taking one single [81, 238, 248] or multiple [66, 299,
300] images as input, and aiming at detecting only one [33, 186, 239, 248, 284, 302, 303] or both kinds of
blur [32, 151, 246]. Most of these try to leverage information extracted directly from the intensities [151],
from the gradients [185, 246, 302, 305], or from transformed domains [32, 238, 248, 249, 303].

More recently, supervised learning-based approaches [185], and particularly those based on the use of
Convolutional Neural Networks (CNN), have shown enormous potential for tackling tasks that require a dense,
per-pixel prediction, such as semantic segmentation [36, 236], instance segmentation [94] or crowd counting
via density map estimation [153]. Blur segmentation can also be viewed as one of such dense prediction tasks,
and several works have already explored this approach, either for predicting both types [121, 159, 291] or
defocus only blur [187, 287, 294, 295].

Nevertheless, the performance gain obtained by these fully-supervised, CNN-based approaches trained
end-to-end is relatively modest when compared to gains in other fields. The main bottleneck which hinders the
full power of CNNs in their application to the field of blur localization is the absence of large enough datasets
with pixel-wise annotations. Several recent efforts have partially addressed this void [238, 291, 294, 295], but
these manual annotations are scarce, labour intensive and costly to acquire.

In the absence of large public sets of annotated data, the generation of synthetic image degradations
has been successfully applied for training deep CNNs in recent years. This approach has been adopted for

*This chapter is based on a publication in Image and Vision Computing journal, 2019 [3].
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computer vision tasks as diverse as image super-resolution [142], inpainting [190], image quality assess-
ment [152] or perceptual similarity estimation [290]. It is also a core component of many self-supervised
learning methods, which, facing the lack of large sets of annotated data for a certain final task, define a pretext
task (e.g. inpainting [190], warped image matching [180], artifact spotting [111]) for which ground truth
labels can be automatically derived without manual intervention and be used for feature learning. A particular
case of such scenario would be that of pretext and final tasks being equal.

Synthetic blur generation has also been explored as part of deblurring workflows [133, 184], as the
blur generation process has been extensively studied, especially within deconvolution approaches for image
deblurring. In the context of blur localization, however, synthetic blur operations have only been applied
either over very simple partial blur masks (e.g. consisting of a hard rectilinear partition of the image in
halves [295]) or globally over full patches of reduced size extracted from the whole image [202].

Our main contribution in this chapter is the introduction of a deep self-supervised partial blur detection
framework, which successfully localizes both defocus and object-motion blur types for a single image
without making use of any blur segmentation annotation for training the model. Instead, we circumvent
the lack of large annotated blur detection image sets by selectively applying procedural synthetic blurring
operations to varying regions within images taken from an unrelated non-annotated dataset of natural images.
By controlling the definition of the regions being synthetically blurred, we can automatically generate the
associated ground-truth blur masks on the fly. Fig. 2.1 illustrates the process.

The framework comprises three different instantiations, defined by i) how those regions are extracted and
ii) whether the training is purely based on synthetically blurred images or not:

1. A self-supervised approach, in which the regions to be blurred are defined by an object proposal [129]
model, which can generate class-agnostic plausible object masks and thus generalize well across a
variety of datasets. This method can extract multiple different blur masks per image, so that the model
learns from different image and blur-mask pairs. This allows us to obtain a highly variable training
image stream to feed our CNN-based semantic segmentation model at train time.

2. A weakly-supervised approach, in which such regions are instead selected from the ground truth labels
of any given semantic segmentation image set.

3. A semi-supervised approach, in which the synthetically generated blurred image and labels from the
object proposal method are used in conjunction with real partially blurred images and their respective
manual blur-mask annotations in order to augment the given fully supervised blur segmentation dataset.

By extensively evaluating the learned model on the two largest publicly available pixel-wise annotated
real blur localization datasets [238, 294], we show that our approach generalizes adequately for both blur
types, improving the performance of all the considered classic approaches and that of recent fully supervised
deep CNN-based ones that require large human-labeled training sets. Experimental results show that the
proposed solution can be successfully employed to train a deep blur segmentation model, either without the
need for any specific blur localization dataset or by making use of a very reduced set of images exhibiting
real blur degradations. This is especially important for domains other than that of natural RGB images, for
which no labeled blur masks exist, such as infrared or multispectral [38] imagery, medical imaging [156] or
text documents [161].

2.2 Synthesizing realistic blur
In this chapter, we are interested in learning to localize blur on partially blurred images without using any
labeled example for this specific task (in the self-supervised and weakly supervised approaches). We therefore
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Figure 2.1: General overview of our framework train and testing processes, with each path color representing
one of its three possible instantiations i.e. self-supervised, weakly-supervised and semi-supervised approaches.

switch to the problem of generating plausible blurred scenes from non-blurred images.

2.2.1 Blur mask extraction
The first step of the process is the determination of the parts of the image that will be subject to the synthetic
blurring operation, to which we refer as the blur mask.

Semantic object masks as blur masks
One possible approach to achieve this is that of using a dataset of images on which several objects have been
manually segmented, without any explicit relation to its blur content. This effectively implies making use
of a distant supervision (one grounded on easier to obtain semantic object annotations) for the final blur
segmentation task. We refer to this as our weakly supervised approach.

This kind of labeled data is readily available from datasets generated for semantic segmentation tasks,
such as the Pascal VOC Segmentation challenge 2012 (SegVOC12) [65]. This dataset includes ground truth
annotations of the most prominent objects present in the image (see Fig. 2.2b) corresponding to 20 different
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(a) Input (b) VOC objs. (c) VOC mask

(d) Scores (e) Obj. prop. 1 (f) Obj. prop. 2

(g) Obj. prop. 3 (h) Obj. prop. 4 (i) Obj. prop. 5

Figure 2.2: Blur mask extraction from an input image (a) of the Pascal VOC 2012 dataset [65]. (b) Ground
truth object masks from the segmentation challenge. (c) Blur mask given by the largest connected component.
(d) Sorted scores of objectness given by MCG for this input. (e-i) First five object proposals generated by
MCG [199].

classes. Under this setting, at train time, we build the blur mask for each input image by computing the
connected components of the largest object present in the corresponding ground truth (Fig. 2.2c).

Object proposals as blur masks
Our purely self-supervised method takes one step ahead by removing the need for manual object segmentation,
and replacing it with the inclusion of a class-agnostic object mask proposal generation step. The goal of
object proposal generation methods is, given an input image, to yield a set of either bounding boxes or
segmentation masks that correspond to different object location hypotheses. Its primary application is serving
as a first candidate location filtering stage of two-phase object detection methods, so that more resources can
be allocated for the representation and analysis of the resulting subset of regions.
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(a) (b) (c) (d)

  
(e) (f) (g) (h)

Figure 2.3: (a) Input image from the VOC dataset (b) Segmented Foreground (c-d) Blurring of input image
with Gaussian blur, σ= 1.5,3 pixels (e-h) Blurring of input image with randomly-generated non-linear motion
blur. Blur kernels displayed at the right-bottom on each image. All images have been blurred with the
halo-artifact removal described in section 2.2.3. Blur differences are better appreciated when focusing in the
roof on the top of the image.

The Multiscale Combinatorial Grouping (MCG) object proposal generation algorithm [199] represents
one of the most accurate approaches of its kind. Moreover, although some learning-based steps are involved
in its model creation process, its ability to generalize across different datasets renders this method virtually
parameter-free. It yields a ranked set of segmented object proposals after a process that comprises: (i) a
multi-scale input image segmentation step (based on low level features), (ii) a rescaling and alignment of
the segmentation results, (iii) the combination of such results onto a merged multi-scale hierarchy of binary
spatial image partitions (i.e. regions) and (iv) a final combinatorial grouping stage, which explores the region
tree looking for sets of regions that, merged together, are likely to represent complete objects. The resulting
set of -hundreds of- proposals is then ranked in accordance to a score representing such likelihood. During
training, we apply MCG to every input image and, at each epoch, we randomly sample a blur mask from the
probability distribution given by applying a softmax operation over the mentioned scores.

Fig. 2.2 shows an example of blur mask extraction for both ground truth semantic object mask (b-c) and
MCG-based object proposal (e-h) methods. It is important to note that, should we directly use the blur mask
extracted as described in either case, we would be introducing a strong bias in the blur detection training,
favoring the prediction of blurred elements in the foreground or background of the images. This is due to
a comparatively significant amount of the extracted blur masks corresponding to foreground objects. In
order to mitigate this and promote the invariance of the model to this respect, we invert the blur mask with a
probability pi nv .
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(a) (b) (c) (d) (e) (f)

Figure 2.4: (a) Original image from the VOC dataset (b) Inpainted foreground (c,d) Naively blurred back-
ground (e,f) Result of blurring after inpainting background.

2.2.2 Synthetic blur
Once the input blur mask has been created, we can now randomly apply different kinds of synthetic blur
operations over it. Given an image I :Ω⊂R2 →R for which the image domain Ω has been already partitioned
into background ΩB and foreground ΩF , represented as the blur mask, we generate a partially blurred version
of I by first defining a blur kernel K . Then, the resulting artificially blurred image Ib can be easily obtained
by computing:

Ib(x, y) =
{

K ∗ I (x, y), for (x, y) ∈ΩB ,
I (x, y), for (x, y) ∈ΩF .

(2.1)

The adequate definition of the kernel K is critical in order to accomplish the goal of generating realistic
blur. While blur coming from situations on which an object is in-focus and the background is defocused can
be easily simulated by Gaussian kernels Kσ of varying standard deviations σ, blurs of different natures, e.g.
motion blur, are harder to emulate. Since our aim is to produce fast blurred versions of a given background
on the fly, we design a simple pipeline for generating non-linear motion blur:

1. Build a horizontal line of length 1×m in a discrete domain Ωk ⊂Ω, obtaining a kernel Km that defines
a linear horizontal motion blur.

2. Rotate it by α degrees, obtaining a kernel K(m,α) that defines a linear diagonal motion blur.

3. Apply an elastic deformation E :Ωk →Ωk of the underlying image grid Ωk that turns K(m,α) into a
non-linear kernel K(m,α,E ).

In training time, a random decision of whether to apply defocus blur or motion blur is made for each training
image. The definitions of σ or (m,α,E ) are also randomized by drawing parameters from a suitable range of
values. In this way, the same image can be transformed in infinitely many ways.

In Fig. (2.3a) we show one image from our Pascal VOC training set. In Figs. (2.3c) and (2.3d) the
background, as given by Fig. (2.3b), is blurred with two Gaussians of varying standard deviations, whereas
in Figs. (2.3e–2.3h) different non-linear motion blurs are applied. It should be noted that there exist more
sophisticated mechanisms to simulate non-linear image blurring based on physical considerations [133].
However, for the purposes of this chapter we prioritize a simple and efficient strategy like the one described
above.

Note that, although ideally we would want to use perfectly sharp images to perform the selective blurring,
the employed SegVOC12 dataset does indeed contain some pictures exhibiting preexisting partial blur. This
means that the artificially generated ground truth will contain a certain amount of noisy pixel-level labels. In
spite of this, as shown in section 2.4, our framework is able to successfully learn to segment real blur.

22
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2.2.3 Removing halo artifacts by inpainting
The naive approach of blurring the image, and then placing back the unblurred foreground on its original
location has some disadvantages. Namely, this procedure leads to the appearance of halo artifacts around
the borders of the foreground, as shown in Figs. (2.4c) and (2.4d). The reason of this problem is that sharp
intensity jumps at borders of foreground objects artificially distort image statistics when averaging with a blur
kernel around those pixels.

If a model is trained with images containing these halos, it will likely learn to localize blur by simply
finding the position of such artifacts. In order to avoid this situation, we propose a different approach to
obtain a blurred-background image. After extracting the sharp foreground from a given image, we proceed to
inpaint the foreground pixels applying the method from [250], as shown in Fig. (2.4b), before blurring the
background. This process allows to remove halo artifacts from the artificially blurred scenes before supplying
them to our model, see Figs. (2.4e) and (2.4f).

2.3 Convolutional Neural Networks for Blur Segmentation from Syn-
thetic Data

2.3.1 Architecture
Section 2.2 provides us with all the necessary tools to create a procedural -and thus, highly variable- training
image flow. By posing blur localization as a dense, per-pixel classification task, we can make use of one of the
well-established set of deep architectures devoted to semantic segmentation and feed it with such synthetically
distorted image stream for training. We consciously avoid the ad hoc design of an architecture specifically
suited for our target task, and instead rely on an off-the-shelf deep network, which allows us to isolate the
contribution derived from the proposed training procedure.

We select the DeepLabv3 [36] Network as our reference CNN architecture, since it has recently shown
state of the art performance on various dense labeling tasks. This is partly due to the fact that it features an
effective receptive field significantly larger than those of other standard architectures. These are enabled
by the use of atrous convolutions (first introduced in this context in [35, 286]), which also contribute to the
attainment of output maps with a large spatial resolution. It has been previously shown that high semantic
level features can greatly contribute to solve the task of blur localization [159]. Hence, we can expect that
the use of wide receptive fields, covering significant parts of the scene, will bring important benefits to
our technique. The DeepLabv3 architecture also benefits from the fusion of feature maps from multiple
scales (which has proven crucial for solving the scale ambiguity problem [121]): the use of a new Atrous
Spatial Pyramid Pooling (ASPP) module helps capture context at various ranges. In this chapter, we employ
the DeepLabv3-ResNet101 variation of the architecture, which is constructed by a Deeplabv3 model with
a ResNet-101 backbone. We start from a model initially pre-trained on a subset of the COCO train2017
dataset [148] containing the 20 classes also present in the Pascal VOC 2012 segmentation dataset, and we
substitute its final classifier with a 1×1×256×2 2D convolution, followed by a l og So f tmax operation.

2.3.2 Training procedure
Our training set for the purely self-supervised and weakly supervised approaches is generated by randomly
applying synthetic defocus and motion blurring operations (generated as described in section 2.2) to image
batches (with a batch size of 18) from the training set of the SegVOC12 dataset [65]. Such degradations are
selectively applied according to the binary mask created on the fly as mentioned in sections 2.2.1 and 2.2.1
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for the ground truth semantic object masks and object proposal-based mask, respectively, and the blur mask
itself is used as the ground truth label.

Additionally, the usual standard random data transformations (affine transforms, flips, color jitter, crop-
ping) are applied to the input and target image pairs before resizing them from their original size to 224×224
pixels. A randomly applied JPEG compression-based augmentation is also performed at different stages of
the input image preprocessing workflow, with the aim of gaining invariance to low level, dataset-specific
regularities.

We employ a negative log-likelihood loss that we minimize using the Adam optimizer, and let the
model train until the validation loss stagnates for 20 epochs. A reduced number of hyperparameter tuning
configurations was tried for each of the experimental setting, and the setup yielding the lowest validation loss
was kept for evaluation. In most of the configurations, this corresponded to a learning rate value of 10−5 and
a weight decay of 5 ·10−4.

2.4 Experimental Results

We evaluate the trained model on the largest publicly available† dataset of images annotated in terms of
defocus and object-motion blur localization, i.e. that of Shi et al. [238]‡. The dataset consists of 1000
partially blurred natural images with human-made binary (blur/no-blur) pixel-wise annotations, of which 704
correspond to defocus blur and 296 to motion blur-affected images. Following [159], we partition the dataset
in an odd and an even subset, both of them containing an approximately equal amount of images affected by
both types of blurs), and keep the latter held out for testing purposes. Unless otherwise stated, all the results
shown in this section were thus evaluated on the 500 images from Shi et al.’s even subset. Meanwhile, a 20%
of the odd subset (100 images) is used for validation, and the remaining 400 images are used for training in
those experimental setups that require a supervised training component (i.e. our semi-supervised approach
and the fully supervised model from Table 2.1 and Fig 2.6).

At inference, we run a simple test-time augmentation (TTA) process, consisting of averaging the pre-
dictions yielded by the original input image, together with its horizontally flipped version, and upscale
the resulting 224×224 pixels-sized predictions to the original, varying image sizes before performing the
evaluation. Even though the raw performance values could, to some extent, benefit from performing a
re-scaling of the resulting blur map in the [0,1] range, we purposefully avoid such kind of post-processing,
in order to enable the prediction of completely sharp or blurred scenes. Consequently, we can consider the
values of the predicted mask pixels as a measure of absolute blurriness, as opposed to a measure of blur level
of each region with respect to the sharpest area of the image.

2.4.1 Self-supervised setup
We first consider the purely self-supervised instantiation of our framework, in which we directly test the
model trained on synthetically blurred images over the 500 even samples of the test dataset. We compare
our method against most of the best performing hand-crafted feature-based approaches which do not require
any dedicated dataset for training: Liu et al. [151], Chakrabarti et al. [32], Su et al. [246], Shi et al. [238],
LBP [284] and HiFST [81]. In addition, we include the performance reported for the same even subset by
one of the most recent deep CNN-based defocus and motion blur detection methods in the literature, i.e., the
Deep Blur Mapping approach by Ma et al. [159].

†Zhang et al.’s dataset [291] and Zhao et al.’s supplementary train set [295] are not open.
‡Pretrained models are available on https://github.com/aitorshuffle/synthblur.
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AUC AP

Method Defocus Motion All Defocus Motion All

Liu et al. [151] 0.722 0.714 0.720 0.792 0.683 0.760
Chakrabarti [32] 0.745 0.640 0.714 0.837 0.675 0.789
Su et al. [246] 0.807 0.750 0.790 0.859 0.707 0.814
Shi et al. [238] 0.836 0.735 0.806 0.876 0.699 0.823
LBP [284] 0.855 0.678 0.802 0.876 0.683 0.819
HiFST [81] 0.901 0.804 0.873 0.928 0.744 0.874

Ma et al. [159] 0.947 0.861 0.922 0.966 0.784 0.912

Ours self-supervised 0.945 0.905 0.933 0.960 0.838 0.924
Ours weakly supervised (segmentation masks) 0.941 0.897 0.928 0.959 0.849 0.926
Ours semi-supervised (joint with 400 odd img.) 0.956 0.904 0.941 0.974 0.840 0.934

Fully supervised (finetuned to 400 odd img.) 0.943 0.875 0.923 0.965 0.819 0.922

Table 2.1: Quantitative evaluation over Shi et al.’s dataset’s [238] even partition. Best, 2nd best and 3rd best
results are highlighted for each metric and blur type.

Table 2.1 shows the obtained results in terms of Area Under the Receiver Operating Characteristic (ROC)
Curve (AUC) and Average Precision (AP), as computed over the different values of recall given by the
Precision-Recall (P-R) curve. Both the AUC and AP values were computed individually for each output
map and then averaged over the whole even test subset. The overall performance value (All) is also shown
disaggregated for the Defocus and Motion subsets of the database. Note that, as is the case with most of
the other methods, in absolute terms our approach performs better over the defocused images than over the
motion-blurred ones. This will hold true for the results of all the three variants of our framework.

From Table 2.1 we can see that our self-supervised approach performs significantly better than all the other
non-deep methods for every metric and blur-type subset. Furthermore, the proposed self-supervised learning
method, when used to train the off-the-shelf DeepLabv3_resnet101 network and without ever observing a
single image with real blur, yields better overall AUC and AP values than Ma et al.’s CNN architecture [159],
whose design was tuned ad hoc for this task and trained end-to-end in a fully supervised setup over the 500
odd samples of the dataset§. In particular, our method performs close to Ma et al.’s on the defocus blur subset,
but significantly better for the motion blur samples. The last row of Table 2.1 (i.e. Fully supervised) shows
the results obtained by fine-tuning the DeepLabv3_resnet101 network over Shi’s odd subset. The mixed
results of this fully supervised model when compared to Ma et al. suggest that the performance gain of our
self-supervised method is largely due to the benefits of our training scheme, rather than being just a product
of the use of a better architecture.

Other relevant fully supervised CNN based results were left out of this comparison for various reasons:
Zhao et al. [294] target exclusively images degraded with defocus blur, and their training procedure involves
(i) pre-training the model employing very simple artificial defocus blurring operations over half of the image
on samples from additional datasets and (ii) further fine-tuning it over 604 out of the 704 images of Shi et
al.’s defocus blur partition and testing it over the remaining 100. Finally, Zhang et al. [291] train their ad hoc

§The performance evaluation protocol in [159] is slightly different, as they compute a single AP value for a one-dimensional vector
containing the predictions of all the pixels of every image in the even subset. Although we believe that the AUC/AP values should be
computed on a per-image basis, under their protocol our self-supervised overall AP is 0.952, vs. their reported value of 0.880
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AUC AP

DF MT All DF MT All

DF 0.949 0.826 0.913 0.967 0.773 0.910
MT 0.934 0.894 0.922 0.953 0.831 0.917
All 0.945 0.905 0.933 0.960 0.838 0.924

Table 2.2: Blur type based ablation test over Shi et al.’s dataset’s [238] even partition, in our self-supervised
setup. Rows represent the synthetic blur type being applied on training (DF=Defocus, MT=Motion,
All=Defocus and Motion). Columns represent the test (sub)set. Bold is best.

designed ABC-FuseNet architecture end-to-end on their unreleased SmartBlur blur segmentation dataset of
10.000 images before evaluating on Shi et al. Even with such amount of training samples, their reported AP
is 0.869 for the whole dataset, sensibly below our results on the even partition.

Fig.2.5 contains visual results for a small random subset of images affected by both types of blur (defocus
blur in the top seven rows, motion blur in the bottom seven), as predicted for most of the considered methods.
We can observe that, even without the utilization of any single ground truth blur segmentation annotation from
the target dataset for direct supervision, our self-supervised approach obtains accurate masks, comparable in
visual quality to those produced by fully-supervised deep CNN-based methods, such as [159].

Blur type ablation Finally, Table 2.2 shows the results obtained over the same sets when only defocus
blur or only motion blur synthetic degradations where applied during training in our self-supervised setup.
The results suggest that devoting the full capacity of the network to learning to detect only one specific type
of degradation does help in the case of defocus blur training, but not so when the training is constrained to
observing samples affected solely by object motion. For the latter, the increase of variability introduced by
feeding the net with both kinds of degradations seems beneficial, probably due to a regularization effect.
Cross-blur type evaluation is asymmetric: while training on motion-only blur achieves decent results on the
defocus-only test subset, a model trained uniquely on defocus blur synthetic degradations suffers a significant
performance degradation if applied to object motion-affected images.

In addition, this experiment reveals one of the advantages inherent to our blur detection framework: by
selectively tunning the ratio of images being synthetically blurred with defocus or motion kernels during
training, we can prioritize the performance over either kind of blurs, or operate anywhere in between.

2.4.2 Weakly supervised setup
The Ours weakly supervised-labeled row from Table 2.1 shows the results achieved with our weakly supervised
approach, based on the use of manually annotated semantic object segments as blur masks instead of the
unsupervised proposals yielded by the MCG algorithm. While one could intuitively think of this as an upper
bound for our self-supervised method’s performance, we observe that, in fact, both methods perform almost
on pair, with the self-supervised approach yielding slightly better results for the images affected by defocus
blur and with no clear strongest method in terms of motion-blur and overall results, depending on the metric
of interest. This experiment shows that applying blur degradations to object proposals computed with an
object proposal method does not negatively impact our results, and that similar outcomes are obtained when
compared to a method trained with ground truth segmentation masks.
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Input Ground truth Liu [151] Chakraba.
[32]

Su [246] Shi [238] LBP [284] HiFST [81] Ma [159] Ours self-
sup.

Figure 2.5: Qualitative results for a sample of images from Shi’s dataset [238] affected by defocus (top 7) and
motion (bottom 7) blur processed by the different evaluated algorithms.

2.4.3 Semi-supervised setup
We now introduce a modification in the training process in order to test the usefulness of our proposed
synthetically blurred image-based training when a limited number of blur segmentation annotations are
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(a)

(b)

Figure 2.6: (a) AUC and (b) AP as a function of the number of images with real blur from the Shi et al.’s
dataset [238] used in the training process, in the following setups: (i) Joint training on images with synthetic
and real blur (Ours semi-supervised.) (ii) Direct fully-supervised fine-tuning on images from Shi et al. (Fully
supervised). The following setups are shown for comparative purposes, but do not use any image from Shi
et al. : (iii) MCG object proposals-based self-supervised training (Ours self-supervised), (iv) SegVOC12
semantic segmentation masks-based weakly supervised training (Ours weakly supervised). The set of images
with real blur ar part of Shi et al.’s odd subset, containing both defocus and motion blur. All the experiments
were done using the DeepLabv3 architecture [36] with a Resnet101 backbone.

available for the target dataset. This corresponds to our semi-supervised experimental setting, in which a joint
training is performed: mini-batches are now composed of equal amount of image and ground truth blur mask
pairs produced (i) in a MCG-based synthetic blurring operation, and (ii) sampled from the train subset of the
target dataset [238].

In order to assess the usefulness of this semi-supervised setting, we consider the 400 images from Shi et
al.’s training set that were previously separated and employ a varying fraction of them for joint training with
the synthetically blurred images. Specifically, we conduct the experiment with a 2%, 4%, 5%, 10%, 20%, 40%
and 80% of the odd part being used as training aid, which, in absolute terms, correspond to 10, 20, 25, 50,
100, 200, and 400 images, respectively. The evaluation protocol is not affected, and the trained model is then
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tested on the 500 even pairs of the dataset.
We compare our semi-supervised results with those presented in the preceding sections (i.e. Ours self-

supervised and Ours weakly supervised approaches from Table 2.1), whose performance metrics do not vary
with the number of real images being used for joint training. Finally, for comparison we extend the fully
supervised approach presented in section 2.4.1 by fine-tuning the same deeplabv3_resnet101 model over the
same fractions of the odd train partition.

Fig. 2.6 shows the AUC and AP values obtained for each of the aforementioned methods, both as overall
metrics and with disaggregated values for defocus and motion blur affected images. We observe that:

• For all the considered amounts of annotated images, our joint, semi-supervised approach outperforms
the fully supervised one by a significant margin for both blur types, especially so as we operate with few
real samples. This means that the use of synthetically generated blurred image-ground truth pairs has
proven useful as additional source of training data for improving the performance of fully supervised
blur detection approaches trained end-to-end.

• The concrete AUC and AP values obtained by these variations for 400 real blur images were also added,
for comparison, to Table 2.1. As shown there, the semi-supervised training scheme achieves the best
overall results and, for every subset and metric, there is always one of the three instantiations of our
framework outperforming every other deep fully supervised alternative. In particular, our best method
(semi-supervised setting) reaches an overall AUC of 0.941 and an AP of 0.934, 0.019 and 0.022 points
better than Ma et al.’s, respectively.

• Even the self-supervised or the technically simpler but more annotation-dependent weakly supervised
variants of our framework can clearly outperform both their semi-supervised counterpart and, most
notably, the fully supervised training in the lower part of the range.

• This gap is closed by the fully supervised training scheme only for the defocus blur subset, as we keep
adding images with real blur, but not so in the case of the motion blur subset.

2.4.4 Cross-dataset generalization
One of the most frequent limitations of current end-to-end trained CNN-based solutions to many computer
vision tasks is the inability of models trained on a certain dataset to generalize to other datasets with some
underlying distribution shift, either revealed as some readily apparent visual difference (e.g. illumination,
object appearance) or due to some hard-to-perceive low level statistical regularities within the dataset. Domain
adaptation solutions [259] aim at mitigating the harmful effect of such domain shifts, but they are frequently
based on domain-adversarial training strategies that can be cumbersome to implement, and mostly ineffective
in providing a significant performance gain when both domains are easily told apart.

The following experiment seeks to evaluate this cross-dataset generalization ability for our self-supervised
approach as compared to that of other methods. To that end, we introduce the dataset of defocus blurred
images provided by Zhao et al. in [294], which will serve for testing purposes. Table 2.3 shows the
results obtained by Zhao et al. themselves, along with Ma et al.’s and the aforementioned fully supervised
DeepLabv3 model. The reported values are all result of the direct application of the models learned over Shi
et al.’s dataset. These are further compared with our weakly-supervised and self-supervised training methods,
showing that the latter exhibits a significantly better generalization ability (0.950 vs. 0.923 of AUC for Ma et
al.’s approach).

As a general conclusion, we show that synthetically blurring parts of images with a certain semantic
coherence is, on its own, a useful technique to perform self-supervised or weakly supervised blur localization,
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Method AUC AP

Zhao et al. [294] 0.913 0.946
Ma et al. [159] 0.923 0.956

Ours self-supervised 0.950 0.976
Ours weakly supervised 0.915 0.953

Fully supervised 0.904 0.952

Table 2.3: Direct testing of models from Table 2.1 on Zhao et al.’s defocus blur dataset [294], together with
Zhao et al.’s [294] own results. None of the models in this table have seen Zhao et al.’s dataset during
training. Bold is best.

and that its use as aid when performing supervised end-to-end training (even in extreme few-shot cases) can
help boost detection accuracy. Those domains where annotated data is scarce can particularly benefit from
such approaches when applied in conjunction with other downstream computer vision tasks. Histological
imaging (to focus a potential disease classification model on sharp parts of a digitized slide), multispectral
imaging (where a significant, hardly avoidable blur effect is often found due to the chromatic aberrations
derived from the large bandwidth of the captured spectra, and it is difficult to tell it apart from motion or
defocus blur effects) or document scanning are some examples of such situations where a self-supervised
approach could have a large impact.

2.5 Conclusions
This chapter presents a framework for deep defocus and object motion blur segmentation built upon the
procedural application of both types of synthetic blurring distortions over regions of images. The self-
supervised and weakly supervised versions of the framework exploit different ways of obtaining the candidate
blur masks for automatic ground truth generation, and can be applied without any blur localization annotation.
In the semi-supervised case, this source of data augmentation can leverage the availability of a few labeled
images to further improve the obtained segmentation accuracies. Extensive quantitative and qualitative
experiments show that a segmentation CNN trained on this kind of synthetic data under any of the three
mentioned framework configurations is able to accurately localize the blurred regions of a hold-out set,
showing performances well above other recent CNN-based approaches.
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3
Adversarial networks for spatial context-aware
spectral image reconstruction from RGB*

3.1 Introduction
Hyperspectral (HS) imaging has gained relevance over the last couple of years in the applied vision community.
Remote sensing, UAV-based imaging, precision agriculture or autonomous driving are only some of the fields
that are already benefiting from the use of imaging devices that provide a response that spans the spectral
dimension with narrow-band channels to produce an image with higher spectral resolution than the standard
RGB trichromatic one.

While the evolution of HS imaging devices has undergone major breakthroughs, it is also true that there is
still a trade-off inherent to the fact that we are ultimately capturing three dimensional information with a two
dimensional sensor, which limits the quality or resolution of the acquired signal in either of those dimensions:
spatial, spectral or temporal. On top of that, the cost of such devices is orders of magnitude above that of
conventional RGB cameras.

In this context, HS signal reconstruction from broadband or limited acquisition channels (typically, from
RGB sensors) arises as a natural computational alternative, either to compete against native HS systems or to
be included as part of their signal post-processing backends. The spectral reconstruction problem is a severely
underconstrained, highly non-linear one, and the algorithms trying to solve this mapping should exploit the
low dimensionality of the natural HS images [31] and learn informative priors of diverse forms from real
world object reflectances, to be leveraged in the reconstruction phase. Note, however, that most of the existing
solutions handle each pixel individually. By doing so, they are not taking advantage of the latent contextual
information available in the spatially local neighborhood [31].

Generative adversarial Networks (GAN) are a class of neural networks which have shown to be able to
successfully generate samples from the complex manifold of real images. In this chapter, we use this class of
algorithms to learn a generative model of the joint spectro-spatial distribution of the data manifold of natural
HS images and use it to optimally exploit spatial context information. To our knowledge, this is the first time
Convolutional Neural Networks (CNN) are used in the task of spectral reconstruction of natural images. We
quantitatively evaluate our approach on the largest HS natural image dataset available to date, i.e. ICVL, by
comparing against [6], and show error drops of 33.2% (RMSE) and 54.0% (relative RMSE) over their state of
the art results.

3.1.1 Related work
A number of works are relevant to the proposed approach. This task was first addressed by isolating its spatial
component and focusing on the reconstruction of homogeneous, well-established reflectances of real world
surfaces such as Munsell chips, either from multispectral, RGB components [97] or from the tristimulus
values [2, 11].

Initial attempts on the spectral reconstruction of natural images from full size RGB input required
additional constrains or multiple input forms to help in their task: [117] and [26] use the aid of a low

*This chapter is based on a publication in the IEEE International Conference in Computer Vision Workshops (ICCVW), 2017 [4].
The method was also used in our submission to the NTIRE 2018 Challenge on Spectral Reconstruction from RGB Images [7]
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Figure 3.1: Adversarial spatial context-aware spectral image reconstruction model.

resolution HS measurement in addition to the RGB input, [157] restricts to the skylight samples domain,
and [80, 188, 189], among others, rely on the aid of computational photography-like multiplexed narrow band
lighting. The latter does, however, use spatial information for learning, as does [31], which focuses on the
statistics for this class of images and defines a representation basis and computation method for the associated
coefficients, but does not tackle reconstruction.

Solutions relying on a single RGB image input at test time are scarce, and almost none of them leverage
the spatial context: [176] uses a Radial Basis Function network and produces an estimate of scene reflectance
and global illuminant, but assumes a known camera color matching function, and directly depends on the
performance of a white balancing stage as part of the workflow. [296] presents the matrix R method for spectral
reflectance reconstruction, which additionally requires a calibration target to build a camera model. [6] learns
a sparse dictionary of HS signatures as bases for the reconstruction. By treating each pixel independently, the
ability to use the surround information is lost e.g. for producing distinct spectral outputs for metameric RGB
pairs dependent on the context.

Remarkably, [220] exploits spatial material properties of the imaged objects by extracting not only spectral,
but also convolutional features resulting from the application of the filter banks from [261], and adopting a
constrained sparse coding-based reconstruction approach. In parallel to our development, we found a similar
approach [72] which makes use of a CNN-based encoder-decoder to address this task.

Finally, there exists a certain relation between the HS reconstruction and the image colorization [42]
tasks, which has been previously addressed in a similar fashion [108, 289], but under different evaluation
requirements. We can think of the former being a generalization of the latter for an arbitrary number of
input/output channels.

None of these methods would have been possible without the existence of publicly available HS natural
image datasets. Until recently, the amount of images per set was the limiting factor for the development of
HS reconstruction algorithms that learn on the basis of images or image patches [31, 62, 70, 71, 176, 283]. [6]
changed this releasing a set of 201 high resolution images that we show is enough for the successful training
of deep neural networks.
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3.2 Adversarial spectral image reconstruction from RGB
This section describes the core functioning of our method, along with some of the mathematical developments
that derived into the proposed models.

3.2.1 Adversarial learning

Generative Adversarial Networks (GANs). GAN-s [85] are generative statistical models that learn to
produce realistic samples y that lay in the data manifold by relying on a setup consisting on two competing
agents: the generator G takes noise z as input as a source of randomness, and creates fake data samples
G(z). It is trained to make the generated samples as realistic as possible. On the other end, the aim of the
discriminator, D, which randomly takes as input both samples from the training data set and those generated
by G , is to learn to tell if the received input samples are real or fake. Typically, both G and D are neural nets,
and they are trained iteratively to progressively become better in their respective tasks. The objective function
associated to such a setting is:

LG AN (G ,D) = Ey∼pd at a (y)[logD(y)]+Ez∼pnoi se (z)[log(1−D(G(z)))] (3.1)

where G tries to minimize this loss and D attempts to maximize it, yielding the objective function:

G∗ = argmin
G

max
D

LG AN (3.2)

This adversarial framework has successfully been applied to the unsupervised generation of data of different
modalities, including natural images [54], and empirical architecture guidelines for G and D have been
derived [205] for such cases, along with common tricks to stabilize the training process [233].
Conditional Generative Adversarial Networks (cGANs). cGANs [167] extend this framework by feeding
both G and D with additional information x to be used to condition on the output of the generator. Such
conditioning input could adopt different modalities, and range from simple categorical labels [167] to more
sophisticated content, such as text [208] or images [145], either alone or as a combination of multiple input
modalities [209,301]. This has been proved useful for a number of tasks and output types [163,269]. Eq. (3.3)
shows the updated loss function for conditional GANs. In this case, G attempts to generate images that look
realistic given the additional provided input x (be it the class of y , a descriptive text, or an additional image),
and D tries to determine whether the given (x, y) pair makes sense or not as a mapping.

LcG AN (G ,D) = Ex,y∼pd at a (x,y)[logD(x, y)]+Ex∼pd at a (x),z∼pnoi se (z)[log(1−D(x,G(x, z)))] (3.3)

As a result, cGANs open the door to using generative statistical modeling for our HS reconstruction problem
by conditioning the generation of an HS outcome on a given input RGB image.
Adversarial image to image mapping. Many modern computer vision tasks can better be regarded under
the common reference framework of image to image mapping learning, in which a generator model G is
learned that translates an input image x into the most probable representation y of such image in the output
domain. This is the case e.g. for semantic segmentation [236], instance segmentation [50], or depth and
surface normal estimation from single image [14], among others. Most of these tasks have been recently
addressed making use of Convolutional Neural Networks that yield deterministic results as generators, and
which are specifically tailored, in terms of architecture design, objective function or other specific training
details, for their respective tasks.
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There are, in addition, some tasks for which this mapping is not unique, and one same input image
could have multiple equally correct representations in the output domain. Realistic image rendering from
semantically labeled images (inverse of the semantic segmentation problem) or from hand-drawn sketches, or
image colorization [42], are just a few examples of this. The choice of the objective functions to use in each
of these cases is a particularly challenging design aspect; applying an otherwise useful ℓ2 loss to x, y image
pairs is known to be problematic and yield blurry results [136], as the generator tends to average over the
space of valid image representations.

For all of the above, [108] proposes a common image to image mapping learning framework based on the
cGAN adversarial setting, which, provided that one can feed it with co-registered image pairs of input and
output domains, is able to learn the most suitable loss function for each of the tackled tasks in a data-driven
approach. This is done implicitly using the adversarial objective from eq. (3.3), enforced by the discriminator
trying to identify the fake images and, this way, encouraging the generator to become better at trying to
deceive it.

By doing this, [108] manages to get rid of the blur inherent to ℓ2 distance-based models and produce
sharp results. Nevertheless, it has been previously shown [191, 241] that combining one of the traditional loss
functions with the adversarial objective LcG AN can help produce more spatially consistent results and make
the generator less prone to artifacts inherent to the adversarial scheme. They thus place an additional ℓ1 term
(eq.(3.4)) on the generator, which is known to yield less btlur:

Lℓ1 (G) = Ex,y∼pd at a (x,y),z∼pnoi se (z)[∥y −G(x, z)∥1] (3.4)

and produce the following combined objective function:

G∗ = argmin
G

max
D

LcG AN (G ,D)+λLℓ1 (G) (3.5)

where λ is a weighting factor for the ℓ1 term, which is set to 100 in [108]. In essence, LcG AN (G ,D) would
be in charge of producing sharp, realistic looking results, while ℓ1 takes care of the global image structure.

Interestingly, the stochastic output pursued by the noise input to cGAN-like models does not manifest itself
under this design (see details in section 3.2.2), and the resulting mapping is a fundamentally deterministic
one. A probable interpretation is G learning to ignore the effect of the noise. As a result, [108] gets rid of the
noise input and leaves test-time dropout as unique source of randomness.
Adversarial spectral reconstruction networks. The forward correspondence learning between the RGB
and hyperspectral signals is a heavily under-constrained one, which could benefit from an approach that aims
at exploiting the underlying priors present in both the spectral and spatial dimensions and learn a model that
specifically produces realistic outcomes as a target. It not only requires mapping a 3-dimensional image to
a much higher dimensional one (typically 31 spectral channels and the two spatial dimensions), but such
mapping can be context-dependent as well, as is in the case of metameric colors. The inverse mapping,
however, i.e. the rendition of RGB images from their spectral counterparts, is well defined, and deterministic
under the only assumption of the color matching functions defining the observer, or the spectral sensitivity
functions that characterize specific sensors. This makes it immediate to generate perfectly aligned (RGB,
hyperspectral) image pairs (see section 3.3) to be used under the described solution.

Hyperspectral image reconstruction from RGB can then be posed as one of the aforementioned image to
image mapping learning problems and thus be solved under the conditional adversarial network-based image
to image translation framework proposed by [108].
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Figure 3.2: Random RGB samples from the ICVL dataset [6].

The resulting adversarial and combined objectives would then become:

Lad v = EIr g b ,Ihs∼pd at a (Ir g b ,Ihs )[logD(Ir g b , Ihs )]+EIr g b∼pd at a (Ir g b )[log(1−D(Ir g b ,G(Ir g b)))] (3.6)

Lr g b2hs (G ,D) =Lad v +λLℓ1 =Lad v +λEIr g b ,Ihs∼pd at a (Ir g b ,Ihs )[∥Ihs −G(Ir g b)∥1] (3.7)

where Ihs represents the original hyperspectral image, Ir g b is the corresponding input image in the RGB
domain and λ is scalar weight used to balance both loss terms (and is set to 100 in all our experiments, unless
otherwise stated). Note that we have explicitly removed any reference to the input noise, and the RGB image
remains as the only input to G .

Figure 3.1 shows an overview of the whole adversarial spatial context-aware spectral image reconstruction
process. We depart from a database of perfectly aligned RGB and hyperspectral image pairs, which are
extracted one pair at a time. In a first iteration, a first pair of real images of size H ×W is taken: {IRGB , IHS }.
The generator G takes IRGB as input, and yields the corresponding hyperspectral reconstruction of size
H ×W , ÎHS . The discriminator D is now fed with two pairs of images, {IRGB , IHS } and {IRGB , ÎHS } and uses
the associated labels indicating if they are real or fake {1,0} to compute the adversarial loss and update its
gradients. G’s weights are also updated, and both D and G continue to become better at their respective tasks
iteratively.

3.2.2 Architecture design and training
As for the specific implementation of the models, since G needs to yield full-size detailed images, a U-Net-like
architecture [223] is used. Regular autoencoder networks [124] exhibit a progressively reduced representation
size until a bottleneck layer and there is no way for the last layers of accessing the original data, which
negatively affects the results when we aim at detailed outcomes. Unlike these, the U-Net incorporates skip
connections between layers of equal representation size, and concatenates local activations from the upscaling
phase with those coming from the downscaling stages, which has shown to achieve superior performance
on tasks were the details are relevant. It was first proposed with semantic segmentation tasks in mind, but
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original spectral signal reconstruction falls within the kind of tasks that can clearly benefit from accessing the
original input levels at each sample (i.e. pixel).

The discriminator D, defined as PatchGAN, is simpler in terms of convolutional layer count, and is
focused solely on modeling high-frequency structure. Each of the M ×M output neurons is restricted to see
only a limited N ×N receptive field from the input image, which can be significantly smaller than the input
image size. Consequently, only the adversarial loss term is placed over D (eq (3.5)).

The use of this design solution for D is consistent with our initial hypothesis that local spatial context can
help better reconstruct the spectral signal. Specifically, we hypothesize that the proposed approach could
help disentangling the illuminant and object body reflectance components of a pixel’s trichromatic response,
as defined by the dichromatic reflection model [235]. The design of D, with its attached ℓ1 objective, helps
capture the high frequencies that characterize the textures in the image. These are, together with the body
color component, one of the main features characteristic of the different materials which, ultimately, produce
distinct spectral responses. Therefore, convolutionally integrating the trichromatic response of adjacent pixels
should yield a better estimate of the central spectral response. To this respect, the PatchGAN design isolates
D’s response associated to pixels separated by more than one input patch. For small enough patch sizes, this
effectively implies that the discriminator is learning a loss function tailored for texture or material recognition,
making sure that the reconstructed spectra falling within the patch are not only plausible in the spectral
domain, but also spatially consistent in the close proximities.

The illuminant-specific component of [235], on the other hand, is typically largely constant or slowly
varying across big portions of the image (especially in terms of chromaticity and conversely, spectral shape),
and the ℓ1 norm does a good job taking care of its global image-wide consistency, along with that of the
low-mid frequency spatial structures.
Avoiding Batch Normalization. Given the intrinsically exact nature of our task (some of the described
design choices help leverage spatial structure consistency for our task, but we ultimately want the reconstructed
spectra to be accurate), we choose to remove all the Batch Normalization [106] layers present in the generator
architectures proposed in [108]. While this technique has shown to be useful to help accelerate and regularize
the training process for a wide variety of tasks by reducing the internal covariate shift, the fact that it makes
the signal lose track of its original value, along with the deterministic nature of the desired output, makes
it non-advisable for reconstruction tasks. We experimentally found that including Batch Normalization
produced inferior results.

3.2.3 Implementation details
We now provide some details on the configurations used for our implementation. We use Keras with Theano
backend and take the implementation of [108] made by [47] as starting point, modifying it for our purposes.
We use Adam optimizer [123] for both G and D, with a learning rate of 2 ·10−4 and β1 = 0.5. We use a
minibatch size of 1 in order to benefit from the regularization provided by the gradient estimation noise [119],
and following common practice [108]. The training is performed iteratively and alternates between the two
models: at each step, the discriminator is first trained for 50 iterations and then the generator gets trained for
25 more minibatches.

We crop the original 1392×1300 images during the training phase by extracting one random crop of size
256×256 (the H ,W values from section 3.2) per image and epoch. The models are fed with these crops
during training, while, for the testing phase, each full size RGB image is divided in tiles of 256×256 with no
overlap, which effectively yields image sizes of 1280×1280 pixels. Each tile gets processed by the generator
independently and we reconstruct the full image back before evaluating it.

The generator G accepts input images of size 256×256. Its encoding stage is composed by eight successive
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3×3 convolutions with stride 2 and a leaky ReLU after each of them, thus yielding a 1×1 activation in the most
narrow point of the main branch. The initial number of filters is 64, which gets doubled at each convolutional
layer up to 512, keeping it constant after that. On the decoding part, eight transposed convolution blocks
successively double the activation size up until the original 256×256 size, while progressively reducing the
number of filters in a symmetric way with respect to the encoding stage. Each block comprises the transposed
convolution itself, followed by a train-time-only Dropout layer (with a drop rate of 10%) and a leaky ReLU
activation. After each Dropout, the correspondent activations from the encoding stage are concatenated, thus
producing eight skip connections between levels of equivalent activation size. Finally, two 1×1 convolutions
are added at the end before the output tanh activation, with a leaky ReLU in between, in order to get the direct
input images adequately combined with the upstream features.

The discriminator D is a simple single-branch net composed of four 3×3 convolutional layers with stride
2, each of them followed by a leaky ReLU, with filter numbers doubling at each step. A fifth 3×3 convolution
with a sigmoid yields the output 8×8 prediction.

3.3 Experimental evaluation
This section contains an overview of the experiments performed to quantitatively assess our algorithm’s
performance as compared to previous methods.

3.3.1 Dataset
Given the amount of images, diversity and resolution, we evaluate our approach on the dataset presented
in [6]. At the time of writing, it comprised 201 hyperspectral images (see Figure 3.2 for RGB renditions of a
few random samples) of 1392×1300 spatial resolution and 519 spectral bands in the 400nm−1000nm range,
with a spectral resolution of 1.25nm. As for the acquisition, a Specim PS Kappa DX4 hyperspectral camera
was used, together with a rotary stage for spatial scanning. This aspect is noticeable in some of the samples,
in which common objects such as cars exhibit aspect ratios that do not match those we find in real life. There
is also a spectrally downsampled version of 31 bands in the 400nm −700nm range. Following practice
from [6], we use the latter for our reconstruction experiments. There is no illuminant information available
for each of the images, which would allow for object reflectance recovery; therefore, our task consists on the
estimation of the radiance correlate represented by the captured hyperspectral images.

3.3.2 Preparation
In order to get the aligned image pairs dataset required by our method, and given the deterministic correspon-
dence between spectral and RGB samples once the observer (or sensor sensitivity functions) and the output
color space are specified, we render wide band trichromatic RGB versions of the spectral images in the sRGB
color space as follows: we first obtain the CIE X Y Z tristimulus values for each spectral image pixel location
x, making use of the color matching functions corresponding to the CIE 1964 10◦ standard observer:

X(x) = K (x)
700nm∑

λ=400nm
S(λ, x)x̄(λ)∆λ (3.8)

where S(λ, x) is the relative spectral power distribution of pixel x, X = {X ,Y , Z }, x̄(λ) = {x̄(λ), ȳ(λ), z̄(λ)} are
the color matching functions, ∆λ= 10nm and K (x) is the normalization factor, defined, for illuminant L(λ, x),
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Method RMSE RMSERel GFC ∆E00

Galliani et al. [72] (reported) 1.980 0.0587 − −
Arad et al. [6] (reported) 2.633 0.0756 - -

Arad et al. [6] (optimized parameters) 2.184±0.064 0.0872±0.004 − −
Ours (weighted avg.) 1.457±0.040 0.0401±0.0024 0.99921±0.00012 2.044±0.341

Ours (fold 0) 1.452±0.101 0.0383±0.0024 0.99906±0.00001 1.861±0.324
Ours (fold 1) 1.463±0.022 0.0420±0.0024 0.99936±0.00023 2.228±0.358

Table 3.1: Summary results of the conducted experiments over ICVL dataset. Black pixels contained in
the original hyperspectral images (derived from the variable image width) are not taken into account for
evaluation purposes in any of the experiments, and folds are weighted accordingly. RMSE values are in the
[0−255] range. Two train-test cycles were run and the results averaged.

as:

K (x) = 100∑700nm
λ=400nm L(λ, x)ȳ(λ)∆λ

(3.9)

Note that, before going through this computation, the original spectral power distribution captured by the
camera for each image S′(λ, x) is preprocessed with min value subtraction and max value scaling. The final
step is producing the sRGB renders. We do so by applying the associated 3×3 transformation matrix and
unlinearizing (i.e. gamma-correcting) the result with a 1/2.4 power law gamma with a linear segment in low
luminance values.

While not suffering from the same lack of an adequate performance evaluation method that affects typical
generative modeling tasks [251], spectral signal reconstruction algorithms assessment is an active research
field that lacks consensus on what is the most adequate metric to measure spectral match of signals [105].
When the signals comprise the visual spectrum, the task can be tackled from a variety of perspectives, ranging
from the pure signal processing point of view of spectral curve difference metrics, to a full spectrum of metric
families that place different levels of perceptual load on their computation: metameric indexes, CIE ∆E color
difference equations, or weighted spectral metrics.

If we widen the scope onto full reference image difference metrics, little work has been done on the
spectral extension of these families [138]. We here focus on four of the most widely used metrics, namely
RMSE (Root Mean Squared Error, computed across the spectral dimension for each pixel and then averaging
for whatever number of pixels present in the image or the dataset), RMSERel (i.e. RMSE relative to the
value of the real signal), GFC (Goodness of Fit Coefficient [222]) and ∆E00 (CIEDE2000) perceptual color
difference formula [43] computed over the reconstructed tristimulus values.

3.3.3 Experiments and discussion
We first compare our method with [6]. In their general experiment over the whole set, which was back then
composed of 100 images, they perform a leave-one-out procedure, and learn from pixels sampled along
the whole set except for the unique image being tested at a time. Their reported results for this setting are
shown in Table 3.1 as Arad et al. (reported), together with those reported in [72] on their own evaluation
setting. We choose to instead split the full dataset in two equal partitions of 100 images each †, training on

†Train-test splits available at https://aitorshuffle.github.io/publication/2017-10-10-alvarez-gila_adversarial_2017
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Figure 3.3: Sample results for our method. For each triplet, left, center: sRGB rendition of original and
reconstructed hyperspectral signals, respectively. Right: Original (dashed) and reconstructed (solid) spectra
of eight random pixels identified by the colored dots.

one and reporting on the other, running two full train-test cycles and averaging the results across folds and
runs. Table 3.1 compares the obtained values for the aforementioned metrics over each of the testing sets,
showing an average per-pixel error drop of 33.2% in terms of RMSE and 54.0% in terms of RMSERel with
respect to [6] evaluated over the same splits and with their hyperparameters (i.e. dictionary size, number of
samples per image, iterations and sparsity target) optimized over the test sets. While [6] does not provide
any further evaluation metric, note that our average GFC values are all above the GFC threshold which [222]
considers a very good reconstruction, and one which implies missing only 0.2% of the signal energy in the
process. Also, the average per-pixel color difference (which does not account for spatial perceptual effects) is
constrained around as low as 2∆E00 units.

Figure 3.3 shows the sRGB rendition of original and reconstructed hyperspectral images for some
randomly chosen test image samples. In addition, for each image, we show the original and estimated spectra
for eight randomly selected pixels from the image.

Does the spatial information actually help?
In an attempt to empirically validate our main hypothesis of contextual spatial information on a local
neighborhood being relevant for the correct spectral reconstruction of any given central pixel, we conduct a
branch pruning experiment. We depart from a minimal version of our net, in which both the main branch and
all the skip connections have been removed, except for the one connecting the 256×256 input with the last pair
of 1×1 convolutions (such model predicts each output pixel independently by design, without incorporating
any spatial contribution), and keep adding skip connections at successively deeper levels (extending the
receptive field of the model and thus increasing the spatial contribution at each step) until we end up with the
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Figure 3.4: Branch pruning experiment results. Top-left: RMSE. Top-right: RMSERel. Bottom-left: GFC.
Bottom-right: ∆E00. Leftmost bar is the model with a single skip connection at 256×256 activation size level
and 1×1 receptive field (RF). Each additional bar adds one skip connection at increasingly deeper levels of
the U-Net. The rightmost bar is the full net, resulting from the addition of the main branch, and its RF (which
would be 512×512 in an unconstrained scenario), is here limited by the 256×256 patch size. The addition of
this last layer is justified by the notion of effective RF presented in [158], which may be significantly smaller
than its theoretical counterpart.

full net, after the addition of the main 1×1 stream branch. Figure 3.4 shows the results of running at least two
train-test cycles on each of these nets, and testing over the 1280×1280 versions of the images in fold 1. All
the four metrics show a closely correlated outcome, with a very significant average performance improvement
(−20.8% RMSE, −23.5% RMSERel, −47.1%∆E00) when transitioning from the model with a single skip
connection and a 1×1 receptive field to that with 2 skip connections and a 3×3 receptive field. Further
increases of the model’s theoretical receptive field (by adding new branches) yield only marginally better
results (models labeled as 3/7×7, 4/15×15) and, from there on, additional deeper skip connections produce
increasing test error rates. We hypothesize that this is due to the influence of overfitting for experiments
5/31×31 and onwards. Given this, a straightforward way of improving the reported results could be that of
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increasing the regularization associated to the deepest branches by, e.g., increasing their dropout rate.
It is also noticeable the substantially higher variance that the results seem to suggest for the model with a

1×1 receptive field. This would mean that the addition of local spatial information does not only improve the
overall prediction accuracy, but it does so in a more robust manner as well.

3.4 Conclusion
We propose a convolutional neural network architecture that successfully learns an end-to-end mapping
between pairs of input RGB images and their hyperspectral counterparts. We adopt an adversarial framework-
based generative model that shows itself effective in capturing the structure of the data manifold, and takes
into account the spatial contextual information present in RGB images for the spectral reconstruction process.
State of the art results in the ICVL dataset suggest that individual pixel-based approaches suffer from the
fundamental limitation of not being able to effectively exploit the local context when applied to spectral image
data in their attempt to build informative priors. The observed performance in terms of both reconstruction
error and speed open the door to a full range of potential higher level applications in sectors of increasing
demand for spectral footage at a lower cost.
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4
A Probabilistic Model and Capturing Device for Remote
Simultaneous Estimation of Spectral Emissivity and
Temperature of Hot Emissive Materials*

4.1 Introduction
The steelmaking process consists of obtaining steel products through a series of industrial steps of ferrous raw
materials (scrap or iron ore) melting, liquid steel solidification and thermo-mechanical transformation. Those
processes must be properly adjusted based on the features of the raw materials and the required properties of
the steel products to be obtained. Currently, the two main routes for producing steel are the integrated route
and electrical route [10]. However, no matter the process route used, obtaining inline detailed information,
not only for steel, but also for slag in the different reactors is of vital importance for the optimization of the
processes. In the digital era, in which industrial facilities tend to be automatized through process smartization,
the development of online analysis tools is becoming an important topic of concern and heavy processes like
EAF (Electric Arc Furnace) represent a giant challenge. In this sense, several solutions have been reported
for liquid steel control in the EAF, including continuous temperature measurement by using optical fiber or
optical sensors [134], dynamic metallurgical models that continuously solve mass and thermal balances for
the whole system [20] or foamy slag detection by noise and arc harmonics analysis [264].

As for the EAF operation, the process begins with a mixture of different ferrous raw materials being
introduced in the reactor. These materials are melted down in the initial phases of the procedure and then,
during the steel refining phase, the liquid steel is heated up till about 1650◦C. For succeeding in the steel
transformation process, most of the undesired elements contained in the scrap are oxidized and moved to the
slag, whose function is also to improve the efficiency of the huge amounts of energy (electrical and chemical)
continuously being introduced during the EAF operation. At the end of the process, the slag is removed from
the furnace and the steel is poured into a refractory ladle to be refined in the ladle furnace process.

The analysis of the slag temperature and chemical composition is of vital importance during the steel
manufacturing process. The slag composition is measured manually by the use of a manually acquired and
prepared sample on a spectrometer that allows calculating the steel-slag thermodynamic state. Although some
automated methods have been implemented to avoid the slag sample preparation and to directly measure the
slag composition based on its spectral reflectance [197], they still require the manual extraction of the slag
sample, still representing a slow and manual process.

Novel methods are therefore required to measure the temperature and composition of the liquid slag with-
out interfering with the steel manufacturing process. Currently, there exists no viable solution for accurately
measuring the temperature of liquid slag, and few technologies have been posed for online understanding of
slag evolution (i.e. solid/liquid fraction distribution, chemical composition or temperature) [192]. Proposing
a method for remote extraction of continuous slag characteristics would allow for the optimization the EAF
process by continuously adjusting the process parameters according to the evolution of the slag.

In this work, we present a novel portable spectrometer device and Bayesian probabilistic algorithm that
are capable of direct remote estimation of temperature and spectral emissivity from remote radiant samples.
The system captures the radiance signal incoming from an 8 cm diameter spot located up to 20 m away. A
fully Bayesian model integrates all the signal pipeline, simultaneously estimating the sample temperature,

*This chapter is based on a publication in the IEEE Access journal, 2021 [198]. First authorship is shared with Artzai Picon with
equal contribution. It also led to the associated European patent application [196].
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spectral emissivities, the absorption caused by the presence of water vapour and CO2 along the optical path
that explains the observed radiance with a maximum likelihood. The proposed method was validated with
alumina (α− Al2O3) and hexagonal boron nitride (h −B N ) samples and compared with standard laboratory
analysis obtaining good correlation. The proposed system and methods can be used in steel factory settings
for in-situ electric arc furnace monitoring without the need for active thermocouple or calibration blackbody.

4.2 Related work
On the EAF process, temperature is a key factor that regulates thermo-chemical processes in order to yield
appropriate properties of the resulting steel [20, 264]. On the other hand, slag composition determines the
thermodynamic system status between the steel and slag [197]. In this sense, coming to the idea of developing
methods for characterizing materials involved in the steel manufacturing process, a compact and portable
device that remotely provides reliable composition and temperature values under actual industrial conditions
is desirable.

The thermal infrarred range has been widely analysed by different authors in order to establish relationships
between the spectral emissivity and the different materials. Different works [22, 143, 149, 169, 182, 260]
analyse the relationship between the temperature and the emissivity of different materials, evidencing the
dependency of the spectral emissivity on the chemical composition for slag materials such as SiO2, Al2O3,
FeO, Fe2O3, C aO and M gO.

Temperature measurement devices are commonly divided in two different categories: those that require
contact (thermometers, thermocouples, thermistors, etc.) and those that do not (e.g. pyrometers, thermographic
cameras). The latter, which sense and measure the incoming infrared radiation in order to estimate the
temperature, are frequently used for monitoring high-temperature furnaces. To make an accurate temperature
measurement, these methods require precise knowledge on how the emissivity behaves in the spectral range
that the radiation is detected, as T = T (ε(λ)). The emissivity ε(λ) is a parameter that indicates how a material
emits radiation when compared to a black body, the perfect emitter.

A number of works have proposed novel methodologies to measure emissivity and temperature in field
with the use of non-contact and portable devices: Rego-Barcena et al. [212, 213] described a technique
to obtain emissivities in situ at different locations, with a portable, rugged and inexpensive device. Their
method is capable of estimating a single spectral emissivity value and the average temperature by means of
least-squared optimization. However, this method considers the boiler emitter as a gray body. This is not the
case on the EAF furnace, as the emissivity depends on the composition of the slag-steel fraction [20, 22, 216].
As opposed to theirs, our method makes no assumption on the shape of the underlying spectral emissivity of
the sample.

Other methods focus on estimating spectral emissivities under controlled conditions, where the temperature
is not estimated but used as a model input [143]. More recently, different Bayesian methods have been
employed to model the complex interactions between the radiative physical processes: [101] used Montecarlo
techniques to simulate the radiative heat transfer between surfaces, while a few works [56, 63, 96] apply
Bayesian approaches to address the composition estimation problem.

Temperature Emissivity Separation (TES) methods aim to simultaneously estimate sample temperature
and emissivity. Given the inherently under-constrained nature of the problem, most of them tackle the task
by imposing certain strong priors on the proposed models [19, 52, 109, 170–172, 225]. A few others claim
to avoid making such heavy assumptions by instead imposing a maximization of the entropy [15, 16, 150],
although still require to explictly select the temperature and emissivity ranges within which the solution is
expected to be. Besides, in practice, these solutions are often tied in some way to the specific use case for
which they were conceived. Many of the aforementioned approaches were indeed proposed and tested in
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Figure 4.1: Design diagram of the acquisition system. Targeted point is illuminated by the green laser (J). A
collimator (B) captures the signal, which is transmitted to the three spectrometers (L), (M) and (N) through
the fiber bundle (D). Filter (K) eliminates the signal from the green laser (J).

the context of remote sensing applications, and thus operate under a very constrained range of plausible
temperature values [16, 225].

Some of these approaches have also been applied in steel manufacturing processes. Sonoda et al. [244]
e.g. propose a bootstrap filter-based method to estimate the probability distribution of liquid steel tem-
perature. Meanwhile, only machine learning methods have been proposed for the estimation of the slag
parameters [272].

In this work we introduce a compact and portable device that remotely produces reliable temperature
and visible-IR spectral emissivity estimates under actual industrial conditions in quasi real time. The device
comprises three punctual spectrometers with partially overlapping spectral ranges, covering a combined
range of [0.2, 12.0µm] for an improved predictive performance. Along with it, we present and validate a
fully Bayesian radiative transfer model that seamlessly estimates and accounts for the spectral emissivity,
the sample temperature and the different unknown variables that may affect the received radiance on real
industrial situations such as presence of gases on the optical path or fiber misalignments on the spectrometers.
It does so by leveraging the signal received by the three available spectrometers, and could easily generalize
to an arbitrary number of them. As opposed to machine learning-based approaches, the model can be
considered unsupervised once the calibration procedure has been completed, as it requires no further training
data. In addition, it yields full density estimates of the considered random variables, thus considering the
uncertainty associated to each prediction. This is possible due to its Bayesian nature, which also implies the
need to impose a prior distributions over each of the target random variables. The distributions proposed
in section 4.4.2 for such priors provide a good parametrization for the very wide range of temperatures
considered in this work. However, these are soft constraints that may be further softened by substituting them
by other less informative distributions (or hardened, should the user wish to apply it in more constrained
setups); the described framework would still be valid in both cases, and the influence of the prior distributions
is in any case overridden as the evidence provided by the captured observations becomes more prevalent.

4.3 Design of the device
As mentioned in section 4.2, several systems have been proposed to simultaneously calculate spectral
emissivity and temperature of hot emissive samples. However, these systems have been designed to work
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under strict controlled laboratory conditions and are not capable of estimating the temperature and spectral
emissivity under real industrial conditions. The targeted goal for our device is to allow operating on the
proximity of the electric arc furnace from the steel factory. These conditions imply high temperature, dirtiness,
tolerance to mechanical impacts and vibrations and uncontrolled vapour conditions.

Based on preliminary laboratory testing and analysis, the following system requirements were defined and
set as design guidelines. (i) As for the optical requirements, a spectral range of 200−12000 nm was defined
with a minimum spectral resolution of 50 nm/pixel on the far infrared region. (ii) The device should allow for
the remote acquisition of a spot with a diameter of 12 mm at a distance of 20 m. (iii) The system should be able
to perform simultaneous spatial and temporal acquisition, (iv) with a minimum acquisition rate of 0.5 samples
per second. (v) Regarding usability, the device should provide in-field pointing capabilities and on-field
calibration mechanism without the need for sending the system to laboratory for calibration. (vi) Finally,
as for the working conditions, the system should be tolerant to heat and vibrations and (vii) agnostic to the
presence of water vapour, CO and CO2 on the optical path. The present work describes how a prototype
fulfilling these requirements has been designed, built, calibrated ant tested both in laboratory and in real
industrial conditions at the ArcelorMittal research casting factory of Sestao.

4.3.1 System description
Fig. 4.1 shows the acquisition device diagram. In order to capture the radiance from a 12 mm diameter area
from region (A) located up to a distance of 20 m we employ a UV-Enhanced Aluminum Reflective collimator
(B) with an SMA connector that assures a 12 mm beam and a good reflectivity throughout the required range.
The captured radiance passes through a special fiber (C) comprising a fiber bundle that ends in 4 SMA-905
outputs (D). This fiber bundle is composed by one input and four outputs, allowing spectral coverage in the
200−12000 nm range. This fiber bundle is composed by seven fibers: 1×200 µm UV-VIS fiber, 3×240 µm
Polycristaline infrared (PIR) fibers and 4x VIS-NIR 200 µm fibers. Two VIS-NIR fibers (H) are connected
to an inline splice bushing connector (Thorlabs 20-02) (I) which is also connected to a green laser source
(J) (MGL-III-532-300 mW) that serves as system pointer. The UV-VIs fiber (E) connects into a UV-VIS
spectrometer (L), an Ocean Optics HR2000 with a composite grating covering 200−1100 nm. A notch filter
(K) (Thorlabs NF533-17) is placed to remove green laser signal from the spectrometer entrance. The other
two VIS-NIR fibers (F) are connected to a Fourier transform infrared spectrometer (M) composed by a C aF
beamsplitter, with an InGa As detector covering the 0.9−2.6 µm range (ArcOptics). The two PIR fibers are
connected to a second Fourier Transform Infrared spectrometer (N) with a Z nSe beamsplitter covering the
2.5−12 µm range (ArcOptics).

The system is packed into an acquisition case (see Fig. 4.2) that allows taking measurements on industrial
conditions. The case provides mechanical protection to the optical components as well as data connectivity
based on a single USB output connection for all the different acquisition devices.

In order to obtain a continuous spectral signature in each capture, a dedicated software has been developed.
The software performs real time acquisition of the data from the three spectrometers and it applies the
latest optical system’s calibration function on the fly. It allows plotting, recording and saving the captured
information, and provides access to the specific low-level settings of each independent spectrometer.

4.3.2 System calibration
The calibration of the system have been divided into two different processes. A first process models the
spectrometers’ non linear response and generates the optical system transfer function. However, the intended
working conditions of the system may significantly affect the system calibration. Fiber re-installation,
vibrations and in-place temperature variations affect the amount of radiance acquired by each spectrometer.
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Figure 4.2: Packed prototype. (left) Acquisition case, (middle) Packed opto-mechanical system, (right) Tripod
mounting.

This makes necessary an additional in-situ calibration of the system. To cope with this, a second calibration
stage based on a stabilized calibration lamp is added to the system operation.

Calibration of the non-linearities of the spectrometers

Each spectrometer wavelength was calibrated by fitting a 2nd degree polynomial function that maps the
collected counts by the spectrometer at each λi into the theoretical blackbody radiance at the blackbody
temperature (T j ). The polynomial coefficients Wλi are estimated at each wavelength λi by minimizing the
root mean square error between the theoretical blackbody emissivity at T j : Lbbλi

(T j ) and the mapping of the
counts Cλi (T j ) acquired by the spectrometer when looking into a calibrated blackbody at temperature Ti at
λi as described in (4.1):

argminWλi

√√√√ Tn∑
T j =T0

[Lbbλi
(T j )− fcal i b(Cλi (T j ),Wλi )]2 (4.1)

where fcal i b is a 2nd degree polynomial function that takes Wλi as its polynomial coefficients to map
spectrometer acquired counts into theoretical radiance.

To calibrate the system, acquisitions over a blackbody furnace between 500◦C and 1500◦C were performed
at the closest possible distance of 600 mm from the tip of our system collimator and the end of the blackbody
furnace. Fig. 4.3 depicts the calibration setup. It is noteworthy to remark that this optical path contained gases
composition that corresponds to the part of the atmospheric transmittance corresponding to the optical path
that is inside of the calibrated device. However, this effect can be considered negligible in comparison to the
full optical path.

The root mean squared error resulting from this process was 2% for spectrometer 1 (200−1100 nm),
1% for spectrometer 2 (970−2600 nm) and 0.5% for spectrometer 3 (2500−12000 nm), as illustrated in
Table 4.1. Correlation among theoretical radiance and calibration-corrected captured samples for three
specific wavelengths and six temperatures is depicted in Fig. 4.4.

Field calibration
Working in industrial conditions makes the system be affected by mechanical vibrations, dust, temperature
changes, etc. Even the movement between the different fibers occasionally led to observed intensity changes
of up to 15% on the collected signal. Fortunately, these changes are related to the coefficient of transmission
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Figure 4.3: Acquisition system under calibration set-up. (left) System on the calibration room close to the
blackbody furnace, (right) Close-up.

Calibration distance (mm) Test distance (mm) Spectrometer RMSE (%)

1000 1700 1 2%

1000 1700 2 1%

1000 1700 3 0.5%

Table 4.1: Acquisition system calibration error (%).

Figure 4.4: Correlation plot of the calibrated system response vs. an ideal blackbody source for three separate
wavelengths (1765.54 nm, 2527.81 nm, 5330.49 nm) at six different furnace temperatures. x axis: theoretical
blackbody radiance at the specific wavelength. y axis: radiance estimated by the calibration polynomial.
Right and top subplots depict respectively the estimated and real distribution of the temperatures.

between the different fibers and devices. We model this transmission coefficient as independent from
wavelength. Based on this hypothesis, we assume that the change in the amount of radiance acquired by each
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Figure 4.5: Calibration lamp for field calibration. (top) System mounted for calibration, (bottom) Lamp
calibration diagram: calibration lamp, diffusion filter and SLS203L camera.

spectrometer S can be modelled by a proportional factor Cs that does not depend on the wavelength.
In order to reduce this effect, a stabilized spectral calibration lamp emulating a blackbody at 1500 K

(Thorlabs SLS203L (500−9000 nm)) is proposed for daily calibration at the beginning and at the end of
each acquisition campaign. The calibration lamp is used with an installed diffusion filter to allow for diffuse
illumination into the collimator. Fig. 4.5 depicts the imaging system with the coupled calibration camera.

The field calibration procedure is defined as follows: (i) During the spectrometers’ non-linearity calibration
phase (section 4.3.2) the calibration lamp is mounted into the system and switched on, and the radiance
captured by the different spectrometers Ls0(λ) is stored as reference. (ii) Later, during the field measurements,
the calibration lamp is set again and the new signal Ls1(λ) is recorded. (iii) For each spectrometer, the ratio of
the average intensity between the two lamp signals along a specific spectral range [λl ,λh] is used for signal
correction, as shown in (4.2). An spectral range of 450−900 nm is used for spectrometer 1, 960−2500 nm
for spectrometer 2 and 3500−4000 nm for spectrometer 3. Figure 4.6 shows the resulting three obtained
correction factors Ks , one per spectrometer. The RMSE before correction was 11% for the signal induced by
the calibration lamp, whereas this error was reduced to 0.4% after applying the correction factors.

Ks =

λh∑
λ=λl

Ls1(λ)

λh∑
λ=λl

Ls0(λ)

, ∀s ∈ {1,2,3} (4.2)
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Figure 4.6: Calibration correction by using the calibration lamp. (top) In blue, the current radiance received
by the sensor, in red the reference radiance obtained at calibration time and in green the corrected radiance
after applying the correction factors Ks . (bottom) The three Ks correction factors calculated, following (4.2),
as the ratio of current collected collected lamp-induced radiance Ls1(λ) and the radiance collected with the
lamp right after the nonlinear response calibration Ls0(λ).

4.4 Radiative Transfer Model

4.4.1 Model formulation
Our final aim is the simultaneous estimation of the temperature Tbb and spectral emissivity ε(λ,Tbb) of the
observed hot sample, taking as sole input the number of counts (i.e. digital level magnitude) yielded by the
capture software as a function of the wavelength, C (λ). We model the scenario described in the preceding
sections as a perfect blackbody radiator Lbb(λ,Tbb) emitting at our unknown target temperature Tbb , whose
emission is successively filtered by (i) a selective filter with a transfer function that equals the spectral
emissivity that characterizes the sample (both conforming a selective radiator), (ii) the atmospheric spectral
transmittance of the optical path between the device and the sample, Tatm(λ), and (iii) the transfer function
of the full multi-spectrometer optical system, TOS (λ) (comprising the fibers, optical components, detector
and the slit function modelling its spectral convolution), which is determined by the calibration process (see
section 4.3), and relates the observed physical magnitude -radiance, in W/m2µm- to the counts yielded by each
of the spectrometers. Equation (4.3) formalizes this model, which is graphically described in Fig.4.7 [275].

C (λ) =TOS [Lbb(λ,Tbb) ·ε(λ,Tbb) ·Tatm(λ)] (4.3)
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Figure 4.7: Radiative transfer model: The radiance from a blackbody emitter at the unknown sample
temperature is successively filtered by the spectral emissivity of the sample, atmospheric transmittance of the
optical path, and transfer function of the capturing optical system and sensor. The model is solved through
Bayesian probabilistic inference and yields full probability density estimates of sample temperature, spectral
emissivity, atmospheric CO2 and H2O concentrations, and other auxiliary variables. Dashed lines represent
signals, continuous lines represent the different steps modeled by their spectral transmittance.

Thus, the calibrated radiance being observed by our system, Lobs (λ) can be obtained by inverting the
precomputed optical system’s transfer function (resulting from the calibration process described in section
4.3.2) and directly applying it to each captured observation:

Lobs (λ) =T −1
OS [TOS (Lbb(λ,Tbb) ·ε(λ,Tbb) ·Tatm(λ))] (4.4)

The remaining terms in (4.4) contain certain variables that are either our target magnitudes (i.e. spectral
emissivity, ε(λ,Tbb) and temperature Tbb of the equivalent ideal blackbody) or side parameters that need to
be estimated from our observations. In order to solve for these all simultaneously we adopt a probabilistic
programming framework and build a Markov-Chain Monte Carlo (MCMC) based Bayesian inference model.
The modeling details of each of such terms are introduced in the rest of this section:

The ideal blackbody radiance, Lbb(λ,Tbb), is defined as:

Lbb(λ,Tbb) = 2hc2

λ5

1

e
hc

λkB Tbb −1

(4.5)

where kB is the Boltzmann constant, h is the Planck constant, and c is the speed of light. Equation (4.5)
shows the heavy dependence of the radiance Lbb(λ,Tbb) with the target temperature Tbb of the sample. An
accurate estimation of this parameter is thus critical. We consider such temperature a stochastic variable to be
estimated by the probabilistic model.
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The spectral atmospheric transmittance, Tatm(λ), can be defined as a function of the distance, d ,
between the capturing device and the observed radiating sample, and the attenuation coefficient of the
atmosphere, γatm . The latter can be further decomposed in terms of the molar concentration x and the unitary
absorption coefficient γ of each of the considered absorbents, a. Therefore:

Tatm(λ) = e−d ·γatm = e
−d ·∑

a
−xa ·γa

(4.6)

The distance d is set manually according to the acquisition set-up, while the attenuation coefficients are
obtained from the HITRAN2016 (High Resolution Transmittance) molecular spectroscopic database [87],
which comprises spectroscopic parameters for a number of gaseous molecules with a high spectral resolution,
and constitutes the de facto standard for the simulation of atmospheric molecular absorption under arbitrary
conditions. The HITRAN Application Programming Interface (HAPI) [126] was used during this work in order
to obtain accurate and line-by-line information about the absorbents being considered in our measurements.
HAPI provides the molecule-specific attenuation coefficient information in the form of cross section (σi )
with [cm2/molecule] units, which we then convert appropriately. In our case, the molar concentration of the
absorbents (xa) are unknown probabilistic variables to be estimated by the model. We initially considered a
set of potentially significant absorbents comprising H2O, CO2, O3, CO, C H4, N2O, and O2. However, after
simulating the spectral atmospheric transmittance due to each of them within a range of typical concentrations,
sampling distances and ambient conditions in industrial environments (see Fig. 4.8), only H2O, CO2 where
kept in the model as the ones with non-negligible contributions to the overall absorbance, in order to reduce
potential sources of overfitting. Hence, (4.6) can be further decomposed:

Tatm(λ) = e−d ·γatm = e−d ·(xCO2 ·γCO2+xH2O ·γH2O ) (4.7)

Fig. 4.9 shows the effect of the resulting typical atmospheric transmittance over the emission of an ideal
blackbody at 1550 ◦C at a sampling distance of 1.5 m .

The definition domain of the spectral emissivity, ε(λ,Tbb), of the observed radiative source -our main
target variable, which is continuous as a physical magnitude- is given by those of the three spectrometers of
the capturing device, which, together, sample the continuous spectrum at λi ∃∀i ∈ [1, N ].

However, in order to prevent overfitting, we regularize the spectral emissivity with a set of M probabilistic
variables εk , with k = 1, . . . M and M ≪ N , each paired with one specific anchor wavelength in the considered
range, and whose values represent the value of the spectral emissivity of the radiative source at each of such
spectral sampling points.

In order to obtain the spectral emissivity defined for every value of λi , we take advantage of the smooth
variation of the spectral emissivity function [23], and pose M fuzzy sets defined by their triangular membership
functions µk :

µk (λ) =
{

1−
∣∣∣λ−λck

D

∣∣∣ λck −D <λ<λck +D

0 otherwise
(4.8)

where λck is the central wavelength corresponding to εk , ∀k ∈ [1, . . . M ]. Using this representation, the
spectral emissivity at any arbitrary wavelength i can be estimated as the weighted value of the peak emissivity
values, εk , defined at the center of the each fuzzy set (Fig. 4.10).
Multi-spectrometer setup. Although useful for standalone-spectrometers, the presented model does not
take into account the case where the observed spectral radiance signal is a combination of a set of various
spectrometers operating in adjacent, partially overlapping regions of the spectrum. Regions perfomning high
noise were removed from the model. For spectrometer 1 wavelengths between 0.2−0.4um and 0.9−1.2um
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Figure 4.8: Spectral atmospheric transmittance due to each of the considered absorbents (H2O, CO2, O3, CO,
C H4, N2O, and O2.) and the combined transmittance for typical concentrations and 27◦C, at a distance of
1.5 m.

were removed due to spectrometer lack of sensitivity. For spectrometer 2, wavelengths between 2.5−2.7um
were removed and for spectrometer 3, wavelengths between 1.6−3.0um and were removed. The optical
system of our device comprises, though, three different spectrometers, six bunches of optic fiber and a
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Figure 4.9: Radiance from an ideal blackbody at 1550◦C filtered by simulated atmospheric transmittance
due to H2O, CO2 absorption at typical concentrations and 27◦C, sampled at distance of 1.5 m. 1st row)
Combined absorbance of the optical path at high spectral resolution, as yielded by the HAPI model (i.e.
line-by-line cross-section information). 2nd row) Equivalent transmittance as a result of converting the
original, line-by-line magnitude to a low resolution one -matching those of the spectrometers- by convolving
the signal with the slit function that characterizes each of the spectrometers’ sampling processes (a sinc
function for the FTIR spectrometers and a triangular function for the non-FTIR one). 3r d row) Blackbody
radiance and high resolution radiance once filtered by the atmosphere. 4r d row) Atmosphere-filtered radiance
convolved and downsampled to match the spectrometers’ resolution.
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Figure 4.10: Triangular shaped membership functions µk , defined over their respective M central wavelengths
λck ,k = 1. . . M and with a distance D between adjacent central wavelengths λck .

reflective collimator, whose aperture causes that the three spectrometers do not measure exactly the same
area. In order to account for this and for possible fiber misalignments, we introduce a set of three additional
proportionality correction probabilistic variables ks (with s = 1,2,3) into the model. These are constant
for every value of λ within each spectrometer, and their prior value can be pre-calculated by the use of a
calibration lamp as shown in (4.2) and explained in section 4.3.2. Minor variations over the pre-computed
Ks can be estimated by the model should they provide a better explanation (i.e. higher likelihood) of the
observed data.

The resulting radiative transfer model is thus:

Lobs (λ) =T −1
OS

[
TOS

(
ks ·e−γatm (λ)·d ·ε(λ,Tbb) ·Lbb(λ,Tbb)

)]
(4.9)

which contains M+6 unknown parameters that need to be estimated, i.e. θ = {Tbb ,σ, xCO2 , xH2O ,k1,k2,k3,εk } ∀k ∈
[1 . . . M ]. Tbb was directly one of our ultimate targets, and the other one, i.e. ε(λ,Tbb), can then be recon-
structed for every value of λi ∀i ∈ [1 . . . N ] via the membership functions (µk ) from εk ∀k ∈ [1 . . . M ].

4.4.2 Solving the model through probabilistic inference
The only information available to estimate these unknown variables are the observations acquired by the
capturing device, Lobs , and the radiative transfer model defined by (4.9). In order to do so, a probabilistic
Bayesian inference approach is proposed. The field of Bayesian inference addresses the classical problem
of fitting a probabilistic parametric model —our equation (4.9)— to the available noisy observations, i.e.
learning the values of the model parameters, θ, that best explain the measured data, assuming that the
model describes the data generation process faithfully. As opposed to well-known point estimators for such
parameters (e.g. Maximum Likelihood, or Maximum A Posteriori), Bayesian inference constructs a full
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probability distribution over the values of each model parameter, in such a way that we gain insight about the
goodness of our fit, effectively modeling the inherent uncertainty of any measurement process and accounting
for the fact that there is no single optimal set of parameter values which are compatible with the noisy
observations.

At the core of this approach lays the classical Bayes’ formula:

P (θ | x) = P (x | θ)P (θ)

P (x)
(4.10)

where:

• P (θ | x), known as the posterior probability distribution, is the probability of each parameter value
given the measured data. This is ultimately our quantity of interest, the one we need to compute.

In this case we have:

P (θ | x) = P (Tbb ,σ, xCO2 , xH2O ,k1,k2,k3,ε1, . . .εM | Lobs (λ)) (4.11)

and we are ultimately willing to know what are the sample temperature (Tbb) and emissivities εk (Tbb)
that best explain the measured radiance data.

• P (x | θ) is the likelihood, i.e. how we think the data is distributed given a parameter set θ, or how likely
it is that the data was generated by our model with such given parameter set. This is what we use to
evaluate how well our model explains the data, and where we describe how our data was generated,
guided by (4.9).

• P (θ) is the prior, i.e. the probability distribution over the different parameter values. This is the
magnitude that we can use to incorporate any prior knowledge we could have over the parameter values.
Table 4.2 summarizes the prior assignments used in our solution.

• P (x) is the evidence that the data was generated by this model, which could be computed by integrating
over all possible parameter values: P (x) = ∫

θ P (x,θ)dθ. For non-trivial models, though, we are not
able to compute this integral in a closed form.

The intractability of P (x) makes the exact computation of P (θ | x) impossible in most of real-world
examples. However, we can try to approximate the posterior making use of Markov Chain Monte Carlo
(MCMC) methods, which work by constructing a Markov Chain that generates samples yielding a distribution
that matches that of the posterior:

P (θ | x) ∝ P (x | θ)P (θ) (4.12)

This can be achieved by defining just the priors and likelihood, thus avoiding the need to work with the
evidence term. The main of the few caveats to be taken into account is that the samples from the resulting
distribution are not independent i.e. there is a certain non-zero serial correlation between them, but the
resulting distribution can be monitored to this respect so as to ensure a good-enough mixture (i.e. sampling).

The subject of probabilistic programming has recently emerged as a field that helps programmatically
describe how the available data have been generated in terms of random variables, probability distributions
and deterministic relations that can be used to model real-world processes. Specific programming languages
exist that follow and implement this paradigm, but some general-purpose languages, such as Python, also
offer library-based approaches to it, such as PyMC3 [234], which was our library of choice.
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4.4 Radiative Transfer Model

The first modeling decision was to represent the difference between the expected theoretical spectral radi-
ance (given by the successively filtered Planck’s law) and the obtained measurement as a normal distribution
N (µ,σ2), where each sample corresponds to a given wavelength. This corresponds to our likelihood. We can
thus define our observed radiance data, Lobs , as:

Lobs ∼N (µ,σ2) (4.13)

Where the expected value of the distribution, µ, around which the measured samples are expected to be
located, follows a deterministic transformation of the random variables according to (4.9):

µ= Lexpected (λ) (4.14)

And the standard deviation of the distribution is also a random variable with a prior following a Half-
Cauchy distribution [76] with a fixed bet a parameter value:

σ∼ H al f C auchy(β= 10) (4.15)

This means that we are assigning high likelihoods to those unknown random variables that generate a
theoretical Lexpected (λ) radiance which is numerically close to the Lobser ved (λ) radiance acquired by our
device. MCMC obtains the posterior probability P (θ | x) by sampling from some probability distributions that
represent our prior knowledge over each of the unknown model parameters from the model independently of
the observed data. We define such parametrized prior distributions in Table 4.2, by observing their expected
occurrence in nature:

• Tbb is the expected temperature distribution of the target sample. We use the minimum and maximum
temperature values and set a uniform distribution between those values.

• The values of the molar concentrations of CO2 and H2O are based on real typical atmospheric ranges.

• Ks are pre-calculated with a calibration lamp as defined in (4.2) (section 4.3.2) and the model assumes
that there can be some variation over this pre-calculation. Consequently, they are modeled as normal
variables.

• εk is the expected value of the spectral emissivity of the radiative source at the k th control wavelength.

• σ models the intensity of the noise existing on the captured signal, independently of the region of the
spectrum where it is produced. The extremes of the spectral range of each of the spectrometers are
more prone to larger noise levels, while central wavelengths of the respective ranges exhibit less noise.
The imposed Half-Cauchy distribution (4.15) aims at modeling such behavior.

Once we have described the observed data generation process (atmosphere-corrected and calibrated
radiance as given by the spectrometers), we can apply MCMC to obtain samples from the posterior distribution
of each of the unknown variables. Note that, as a result, we will have simultaneous probabilistic estimates for
all the random variables that we defined along this description. These will be our model parameters:

θ = {
Tbb ,σ, xCO2 , xH2O ,k1,k2,k3,ε1, . . .εM

}
(4.16)

In reality, MCMC comprises a full family of distinct algorithms for generating such samples. One of the
most efficient ones in the task of going over the full multidimensional posterior space generating samples
is the NUTS (No-U-Turn Sampler) sampler [99], used in our solution, which takes advantage of the use of
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Parameter Name Prior distribution

Tbb Sample temperature ∼U (mi n = 400◦C ,max = 1500◦C )

xCO2 Molar concentration of CO2 ∼N (µ= 450ppm,σ2 = 502)

xH2O Molar concentration of H2O ∼N (µ= 36000ppm,σ2 = 5002)

ks Spectrometer-wise misalignment proportionality constant ∼N (µ= [closed form Ks , eq. (4.2)],σ2 = 0.0012)

εk Spectral emissivity anchor value ∼U (mi n = 0.0,max = 1.0)

Lobs Observed radiance ∼N (µ= [closed form, eq. (4.9)],σ2)

σ Standard deviation of the N modeling Lobs ∼ H al f C auchy(β= 10)

Table 4.2: Prior distributions assigned to each of the random variables from our Radiative Transfer Model
from (4.9).

the gradient for such duty. In doing so, the more data samples we have, the lower will the uncertainty in the
parameter estimation be, and the less the serial correlation of the samples. This will be reflected in narrower
monomodal distributions for these estimates. Also, for the same sample size, the uncertainty will grow as the
number of parameters we need to estimate increases.

In summary, a complete Bayesian probabilistic model was built, which is sensitive to both the observed
data and the theoretical framework comprising the optical calibration transfer function of the device, the
proportional misalignment and calibration correction factor of the individual spectrometers, the spectral
emissivity and temperature of the radiative sample, and the atmospheric absorption corresponding to the
optical path between the device and the observed sample. The joint modeling of these parameters by means
of a Bayesian inference model implemented via probabilistic programming makes the developed model
remarkably flexible and robust, and enables the simultaneous estimation of all the unknown parameters.

4.5 Experimental validation
In order to validate the proposed method and acquisition system, two different reference materials were
chosen: Alumina (α− Al2O3) and hexagonal boron nitride (h −B N ), for which the emissivity has already
been studied [82,84,226,228]. The spectral emissivity of these materials was carefully measured in laboratory
conditions using the HAIRL emissometer and applying a recently upgraded quantification methods [61, 82].
Making use of a dedicated experimental device, infrared spectral directional emissivity measurements were
performed accurately in a controlled atmosphere as a function of temperature, emission angle, and in situ
surface state evolution.These samples have been chosen for its high-temperature structural stability and the
presence of a Christiansen wavelength. This is a wavelength in the infrared region that appears in certain
ceramic materials at which the emissivity equals to one [226]. It is a very useful feature to obtain the sample
temperature at time it is being measured. As the emitted radiation equals to R = εL(T,λ), where L is the
Planck function, knowing the emissivity at a certain wavelength allows calculating the temperature. Since the
Christiansen wavelength is temperature-independent, usually it is easily determined at room-temperature by
obtaining a spectrum with an integrating sphere.

The spectral emissivity and sample temperature of both materials were estimated under factory industrial
conditions by the system and methods proposed in this chapter. The validation of the temperature estimation
process was performed by attaching a thermocouple to the sample whereas the spectral emissivities of the
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Figure 4.11: Arrangement of the sample in the analysis chamber.

materials were compared with the values measured through the HAIRL emissometer, showing high correlation.
This section details the performed experiments.

4.5.1 Experimental setup

Laboratory measurement setup
Normal spectral emissivity measurements were performed in laboratory air using a Fourier-transform infrared
spectrometer (FTIR) with a thermal DLaTGS detector (1.43−25 µm spectral range, a reference blackbody
(Isotech Pegasus 970-R®) and an optical entrance box that allows switching between the blackbody source
and the sample chamber by a rotating plane mirror. As pointed out in [61], a 10◦ tilting was applied to the
sample to avoid spurious signals. The sample was heated with a resistive Kanthal® wire located underneath,
as depicted in Fig. 4.11. It was heated at a 0.4 K/s rate in order to avoid cracking from sudden thermal
expansion and it was stabilized for 15 minutes to ensure high-temperature stability and constant radiance.

The emissivity measurements were performed between 100◦C and 860◦C. To determine the actual sample
temperature, a non-contact method suitable for materials with low thermal and electrical conductivities was
applied. It makes use of the so-called Christiansen wavelength, at which the emissivity is very close to 1 and
almost independent of the temperature [82, 226]. The Christiansen wavelength is determined by means of
a simple room-temperature reflectivity measurement using an integrating sphere. Then, each measurement
temperature is computed by manually forcing the emissivity at the Christiansen wavelength to be the value
determined in the reflectance measurement (very close to 1).
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Figure 4.12: Sample holder for the alumina, including the attached thermocouple.

In-field industrial setup
For the industrial conditions measurement, a refractory brick was used to hold the alumina sample. In order to
allow time for an accurate temperature measurement, a thermocouple was attached to the sample by means of
refractory cement, as depicted in Fig. 4.12. The calibrated acquisition system was positioned at a top position
and in-situ calibration was performed following the procedure explained in section 4.3.2 making use of the
calibration lamp.

The sample was then heated by means of a LH 15/12 Nabertherm furnace up to 1100◦C. After a
stabilization time of 10 min the sample was taken off the furnace and placed on the sample stage. The system
was monitored simultaneously by an OPTIX PT 50 (1100−1700 nm) external pyrometer and a FLIR T640
(7500−14000 nm) external thermal camera that were used as control devices. The experimental setup is
presented in Fig. 4.13.

Under this configuration, the sample temperature is continuously being monitored by the thermocouple.
The sample radiance was also captured by the presented multi-spectrometer device at a rate of 0.75 samples/s,
with all radiance in the 200−12000 nm being captured. The acquired signal was processed by the probabilistic
algorithm detailed in section 4.4 and the sample temperature and the spectral emissivities at the anchor
wavelengths λck = {0.2,1.0,1.5,2.0,3.0,5.0,6.5,8.0,10.0,12.0}µm are estimated. The experiment was stopped
when the measured sample temperature reached around 600◦C, at which the radiance signal becomes too
noisy for our system. This temperature corresponds, in terms of approximate equivalent radiance for the case
of the two considered materials, with the lower bound of the calibration range described in 4.3.2, which can
be shown shaded in red in Fig. 4.17 and Fig. 4.23.
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Figure 4.13: Experiment setup. The figure shows the acquisition device mounted on the top part, a control
pyrometer and thermal camera, the furnace to heat the sample, the attached thermocouple and the PCs running
the acquisition and control software for the different devices.

4.5.2 Analysis of alumina
Alumina (α− Al2O3) was chosen as a reference material to validate the infrared emissivity measurements
performed by the proposed system. Its purity and open porosity were certified by the supplier (McDanel
Adv. Ceramic Technologies) to be 99.8% and 0%, respectively. The surface roughness was measured with
a profilometer and the average and root mean square values obtained were Ra = 1.36µm and Rq = 1.69µm,
respectively. Then, the infrared reflectance at room temperature was measured (see Fig. 4.14) to locate the
Christiansen wavelength, which was thereby at 9.82 µm, with an emissivity value of 0.99. This value is in
very good agreement with the expected one according to the data in the literature [226].

The results of the laboratory emissivity measurements following the approach illustrated in section 4.5.1
are shown in Fig. 4.15. The shape of the spectra and the thermal evolution are consistent with previous
results in the literature and the typical behaviour of dielectric materials [82, 226]. It is important to note
that the emissivity values observed below 4 µm will not be considered in this chapter, because the material
becomes semitransparent at those wavelengths and part of the radiation emitted by the heater reaches the
detector [82, 112]. The treatment of this effect is out of the scope of the current work. In addition, the feature
at 4.18 µm can be explained by the fundamental vibrational mode of CO2, whereas the H2O absorption is
clearly observed in the 5.5−7.5µm range and due to the residual gases present on the optical path. The curve
corresponding to the lowest temperature configuration (i.e. 103◦C) recorded in this way is also overlaid in
Fig. 4.14, showing good accordance with the room temperature reflectance measurement.

Thereafter, an alumina sample was also analyzed following the industrial setup described in section 4.5.1.
Fig. 4.16 represents partial results of the algorithm, showing the posterior probability of some of the measured
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Figure 4.14: Spectral emissivity of the alumina sample measured at room-temperature from reflectivity (blue)
and from direct radiometric measurement with the laboratory setup at 103◦C (orange).

Figure 4.15: Normal spectral emissivity of the Alumina sample as a function of temperature, as measured in
laboratory.
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Figure 4.16: Estimated posterior probability of some of the stochastic variables for an alumina sample. Each
plot comprises 20 random initializations of the model.

stochastic variables such as sample temperature, spectral emissivities or H2O and CO2 concentrations. Note
that we obtain full probability density estimations of the considered probabilistic variables, which constitute
a more informative outcome than point estimates obtained from other non Bayesian approaches. Fig. 4.17
depicts the remaining components of the output of the algorithm. On the top figure, dotted red points show the
signal captured by the device after calibration correction. The blue continuous line represents the theoretical
radiation from a blackbody at the temperature given by the thermocouple. The green line represents the
radiance of an ideal blackbody Lbb(λ, T̂bb) at the temperature T̂bb estimated by the algorithm, whereas the
black line represents the estimated radiance L̂(λ, T̂bb) of the sample when applying the spectral emissivity
ε̂(λ, T̂bb) estimated by the algorithm to Lbb(λ, T̂bb). The magenta line represents the calculated spectrum when
applying the estimated attenuation caused by CO2 and H2O to the spectrum L̂(λ, T̂bb). On the bottom part of
the figure we depict spectral the emissivity ε̂(λ, T̂bb) estimated by the algorithm as defined in eq. (4.8) and
Fig. 4.10, by composition of the posterior probability estimates of the emissivities at the anchor wavelengths
εk .

Fig. 4.18 shows the comparison between the temperature measured by the thermocouple and the tempera-
ture estimated by the proposed system for the alumina at different real temperature values. The comparison
yields a Root Mean Square Error (RMSE) of 32.3◦C between them and a coefficient of determination
R2 = 0.96, thus exhibiting a good correlation across the whole temperature range. Note that the comparatively
higher error at the lowest nominal temperatures is consistent with the fact that part of the spectral radiance
reaching the system falls below the calibrated range for those temperatures, due to the low emissivity of the
sample in such region (see Fig. 4.17). This range also corresponds to the non-zero transmittance region of the
alumina.

Finally, Fig. 4.19 represents the emissivities measured under laboratory conditions for the alumina sample
at a single temperature setting (see section 4.5.2). The qualitative emissivity behaviour is resembled correctly
by the model in the range of 3.6−12.0 µm. The obtained curve is the typical of ceramic materials. From the
Christiansen wavelength towards shorter wavelengths, a high-emissivity plateau is observed followed by a
steep decrease, whereas towards longer ones the emissivity immediately decreases. For this range it is also
observed that there is a more than acceptable quantitative agreement between the algorithm estimation and
the laboratory measurement. Therefore, we can conclude that the proposed system is suitable to adequately
estimate the temperature and emissivity of alumina. It is worth mentioning here that below 3.6 µm, both
curves differ due to the non-zero transmittance of the sample, and part of the radiation from the heating set is
therefore detected by the spectrometer. This semi-transparency effect will not be treated here. Besides, in the
laboratory-air measurement tracks of CO2 and H2O are evident, while the correction applied in the model
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Figure 4.17: Algorithm output for an alumina sample at 607.8◦C. Top) Application of probabilistic radiative
transfer model to the sample. The blue continuous line represents the theoretical radiation from a blackbody
at the temperature given by the thermocouple. The green line represents the radiance of an ideal blackbody
Lbb(λ, T̂bb) at the temperature T̂bb estimated by the algorithm, whereas the black line represents the estimated
radiance L̂(λ, T̂bb) of the sample when applying the spectral emissivity ε̂(λ, T̂bb) estimated by the algorithm
to Lbb(λ, T̂bb). The magenta line represents the calculated spectrum when applying the estimated attenuation
caused by CO2 and H2O to the spectrum L̂(λ, T̂bb). Bottom) Emissivities ε̂(λ, T̂bb) estimated by the algorithm
as defined in (4.8) and Fig. 4.10.

.

appropriately removes these "artifacts" from the actual emissivity evolution.

4.5.3 Analysis of boron nitride
A sample of hexagonal boron nitride (h −B N ) was used as a reference material complementary to alumina
in order to validate infrared emissivity measurements by our system. A sample processed by hot pressing
of high-purity powders was purchased from Goodfellow, with a range of porosities of 2-15%. The surface
roughness was measured with a profilometer and its average value was Ra = 0.69µm. Finally, the infrared
emissivity at room temperature was measured indirectly with an integrating sphere in order to locate the
Christiansen wavelength, which was found to be at 5.56 µm, with an emissivity value greater than 0.99 (see
Fig. 4.20), which are in agreement with the data reported in the literature [84]. The results of this measurement
are shown in Fig. 4.21.

The laboratory set-up was again arranged following the description in section 4.5.1 and the same procedure
as with the alumina sample was used. The results of the laboratory emissivity measurements (shown in
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Figure 4.18: Regression graph between the temperature measured by the thermocouple and the temperature
estimated by our proposed system and method for the Al2O3 sample.

Figure 4.19: Spectral emissivity of the alumina sample determined in laboratory conditions compared to the
emissivity estimated by the algorithm under industrial conditions.
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Figure 4.20: Spectral emissivity of the boron nitride sample measured at room-temperature from reflectivity
(blue) and from direct radiometric measurement with the laboratory setup at 103◦C (orange).

Figure 4.21: Normal spectral emissivity of the hexagonal boron nitride (h −B N ) sample as a function of
temperature, as measured in laboratory.
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Figure 4.22: Estimated Posterior probability of some of the stochastic variables for a boron nitride sample.
Each plot comprises 20 random initializations of the model.

Fig. 4.21 for the 99-860◦C range and in Fig. 4.20 for the 99◦C case for direct comparison with the reflectivity-
based measurement at room-temperature) were again found to be consistent with the literature and the typical
behaviour of dielectric materials in terms of shape of the spectra and the evolution as a function of the
temperature. As a difference with the measurement acquired from the sample of alumina, the plateau around
the Christiansen wavelength is much shorter with decreasing emissivity towards both sides. Of course, as
these measurements were also performed under laboratory air the absorption peaks corresponding to CO2 and
H2O are also visible. Another particular feature for h −B N in the range of interest for this work, i.e. from 4
to 12 µm in wavelength, is the wide peak observed between 6 and 8 µm, what corrresponds to an infrared
active phonon (for details see [84]). Finally, semi-transparency effects for h −B N are not so significant as for
alumina below 4 µm, leading to reliable emissivity data down to 2 µm.

For the industrial conditions measurement, the same configuration and procedure as with the alumina
experiment was followed, stopping the experiment at 500◦C, once the radiance signal became noisy for
our system. Fig. 4.22 shows the posterior probabilities of some of the stochastic variables estimated of the
algorithm whereas, Fig. 4.23 presents the algorithm’s estimations for a boron nitride sample at 599.44◦C,
following the notation from Fig. 4.17.

The temperature estimation obtained for this sample shows an even better correlation across the whole
range with the thermocouple measurements than in the case of the alumina, as can be seen in Fig. 4.24
(RMSE= 5.69◦C, R2 = 0.996). Finally, (Fig. 4.25) compares the emissivities measured under laboratory
conditions with those estimated under industrial conditions for a fixed temperature value of 852◦C. It can be
appreciated that there is a quite good qualitative and quantitative agreement between both in the 2−12µm
range, except for the region corresponding to the active infrared phonon (6-8 µm) that is removed from the
model. This phenomenon is beyond the scope of the current work.

Furthermore, we can observe that the CO2 (at 4.2 µm) and H2O (at 5.8 µm and 6.5 µm) absorptions
present in the laboratory measurements are adequately treated by our algorithm and eliminated from the
emissivity, thus giving a correct spectra of the actual emissivity.

4.6 Conclusion
In this chapter we presented, to our knowledge, the first capturing device that is able to simultaneously
estimate the spectral emissivity and temperature of a hot emissive material under real steel factory conditions.
The presented device is capable of capturing 0.2−12 µm range radiance signal at up to 20 m away from the
sample, over a 12 mm diameter spot. The device allows for in-situ calibration making use of a stabilized
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Figure 4.23: Algorithm output for an boron nitride sample at 599.44.8◦C. (top) Application of probabilistic
radiative transfer model to the sample. The blue continuous line represents the theoretical radiation from a
blackbody at the temperature given by the thermocouple. The green line represents the radiance of an ideal
blackbody Lbb(λ, T̂bb) at the temperature T̂bb estimated by the algorithm, whereas the black line represents
the estimated radiance L̂(λ, T̂bb) of the sample when applying the spectral emissivity ε̂(λ, T̂bb) estimated
by the algorithm to Lbb(λ, T̂bb). The magenta line represents the calculated spectrum when applying the
estimated attenuation caused by CO2 and H2O to the spectrum L̂(λ, T̂bb). (bottom) Emissivities ε̂(λ, T̂bb)
estimated by the algorithm as defined in (4.8) and Fig. 4.10.

calibration lamp. The system is accompanied by a probabilistic algorithm that is able to produce simultaneous
full probability density estimates of the sample temperature and spectral emissivity at different wavelengths, as
well as the global concentration of H2O and CO2 along the optical path. All these parameters are seamlessly
predicted by a Markov Chain Montecarlo-based estimation algorithm as the ones that provide the best
explanation for the captured data.

We showed that, by analyzing the radiance between 0.2− 12µm, we were capable of estimating the
temperature of alumina and boron nitride samples in a range of 600-1000◦C with an RMSE of 32.3◦C and
5.69◦C, respectively. Spectral emissivity was calculated accurately and the effect of H2O and CO2 absorption
was also estimated and discounted from the measurement.

These results pave the path for future attempts to estimate the slag composition on the electric arc furnace
based on the analysis of the predicted emissivity values.
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Figure 4.24: Regression graph between the temperature measured by the thermocouple and the temperature
estimated by our proposed system and method for the B N sample.

Figure 4.25: Boron nitride emissivity determined in laboratory conditions compared with the emissivity
estimated by the algorithm under industrial conditions.
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5
MVMO: A Multi-Object dataset for Wide Baseline
Multi-View Semantic Segmentation*

5.1 Introduction
The task of semantic segmentation [155] aims at, given an input image, performing pixel-wise classification
over a predefined set of categories. As in many other dense prediction problems, the end-to-end convolutional
neural networks (CNN)-based fully supervised approach to this task has become the de facto standard to
solve it, leading to robustly performing models [223] at the expense of a large amount of human annotations.
Nevertheless, understanding scenes based on a single 2D input is challenging when applied on (i) scenes
with significant inter-object and self-occlusions that hide class-distinctive features (ii) scenes covering a wide
spatial range, where distant objects can show a small apparent size.

In this context, we hypothesize that posing data-driven models that exploit multi-view camera setups
that provide complementary information over the imaged scenes could be of potential interest for improving
the results obtained by single-camera baselines. However, so far multi-view semantic segmentation has
primarily been approached for close-baseline setups [224] i.e. those where the distance between cameras
(and thus, the resulting disparities) are small, whereas solving the aforementioned obstacles requires wide
baselines. Scenarios that could benefit from this approach are frequent in real life, in domains as diverse as
industry (e.g. conveyor belts), surveillance, or traffic management. While the cost inherent to dense manual
annotations is commonly accepted as a necessary toll in monocular segmentation setups, this is hardly the
case for multi-view scenarios, which can be efficiently labeled in synthetically modeled scenes.

In this chapter, we introduce MVMO, the Multi-View Multi-Object dataset, which addresses the
current lack of publicly available large-scale datasets of densely annotated wide-baseline multi-view scenes
containing multiple objects. MVMO is a synthetic, path tracing-based set of 116,000 scenes with per-view
semantic segmentation annotations of 10 object categories. Each scene is observed from a set of 25 camera
locations distributed uniformly in the upper hemisphere [55] (see Fig. 5.1). Unlike most existing multi-view
image datasets (which are designed to be camera-centric and exhibit very close baselines while sensing their
surroundings [224]), MVMO features wide baselines between many camera pairs as a result of a scene-centric
design, and a large amount of objects per scene. This leads to large disparities, notable occlusions and variable
apparent object geometry, size and surface appearances across views. Therefore, MVMO sets a particularly
challenging arrangement that aims at contributing to push research on the fields of multi-view semantic-
segmentation and cross-view semantic knowledge transfer, serving as benchmark for the development of
viable solutions to be later fine-tuned or domain-adapted and applied to real-life domains. The experiments
presented show that simple baselines fail to be of much help in transferring learned models to novel views,
hence suggesting the need for novel research in this direction.

*This chapter is based on a conference submission (under review) [5]. The code and dataset are available at: https://aitorshuffle.
github.io/projects/mvmo/.
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Figure 5.1: Top: two scenes from the proposed 116,000 scene MVMO dataset and the 25 equidistributed
camera locations. Bottom: rendered views and semantic ground truth for the 5 camera poses (highlighted)
used in our experiments.
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5.2 Related work

Dataset Wide Baseline Object Density Representation Photorealism # Scenes # Views # Classes

Human3.6M [107] Yes Low (1) 2D images Real 900,000 in 165 sequences 4 24
3Dpeople [201] Yes Low (1) 3DM→2D S: High B: Low 616,000 in 5,600 sequences 4 8(clothes)/14(body)

SYNTHIA [224] No N/A 3DM→2D Low 51,000 in 51 sequences 8 13

ScanNet [48] ⋆ Low 2D→3DS High 1.5k ⋆ 40
House3D [276] ⋆ Low 3DVE Low 45.6k ⋆ 80
Gibson [278] ⋆ Low 3DVE High (IBR/PCR) 1.4k ⋆ 40
CARLA [60] ⋆ ⋆ 3DVE Mid-High (RT) ⋆ ⋆ 12

MVMO (ours) Yes High (15-20) 3DM→2D High (PT, UOM) 116k (uncorrelated) 25 11

Table 5.1: Datasets for multi/cross-view semantic segmentation. The table shows the lack of datasets with
wide baseline and high object density addressed by MVMO. Object Density: #objects/scene. Does not apply
to close baseline scenarios. Representation: 2D→3DS: 3D Surface reconstructed from 2D. 3DVE: 3D Virtual
Environment. 3DM→2D: 3D Model rendered to 2D images. Photorealism: S: Subject. B:Background. IBR:
Image-Based Rendering. PCR: Point Cloud Rendering (view synthesis from Point Cloud). RT: Ray-Tracing.
PT: Path-Tracing. UOM: Uniform Object Materials. ⋆ Needs to be placed/configured/generated by user;
images are not readily available.

5.2 Related work
Our work relates to a number of previous datasets and approaches over them from various research fields.
Large scale single view semantic segmentation datasets have been of the utmost importance for the devel-
opment of the field and have been used in diverse domains. The PASCAL VOC 2012 dataset for natural
images [65] or the Cityscapes dataset of urban scenes [46] are two representative examples.

At the core of the task of object co-segmentation [265], lays the goal of segmenting the object instances
of common categories among two or more input images, which do not necessarily correspond to distinct
viewpoints of the same scene. Datasets such as iCoseg [17] or [147] have been supporting its evolution for
years.

Several classic computer vision tasks have already witnessed various attempts of wide-baseline multi-
view datasets, in an effort to improve upon their respective single-view performances. In multi-view object
detection, [221] introduces a new multi-class, multi object detection dataset with bounding box annotations
from 6 calibrated cameras and exploits the perspective diversity to address the detection of pedestrians, cars
and buses, hence extending previous datasets (e.g. PETS’09 [67], EPFL [68]), which gather multi-view but
single-class annotations from 7 and 4 cameras, respectively.

Advances on multi-view human pose estimation were possible by leveraging various wide baseline datasets
over RGB [107, 118, 281] and depth [92] images of both groups [114] and individuals. The KTH Multiview
Football Dataset II [118] comprises 800 real-life football scenes captured from three views with 2D/3D
annotated pose keypoints. [281] scales this to 35-69 views on various single-subject scenes. The ITOP
dataset [92] provides front and top view-based human pose keypoint annotations on top of depth input maps.
In contrast, in [114] groups of 3 to 8 subjects are captured and their poses annotated through 480 surrounding
RGB cameras.

The field of multi-view semantic segmentation has been addressed from diverse perspectives. Many early
works prior to the irruption of deep learning techniques focused on the binary segmentation of a single static
foreground object from a sequence of close-baseline views from a class-agnostic point of view [25, 144],
often learning sequence-specific models and being evaluated on just a handful of sequences. They relied
on diverse cues, such as modeling of object-background color distributions [25, 144, 245], central object
fixation [25], interactive user feedback [245] or stereo geometry constraints [128, 144] that occasionally
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led to 3D reconstruction [25, 245]. More recently, [282] used deep self-supervised training to extend the
single subject segmentation task to three dynamic scenes in wide-baseline setups. Moving away from the
subject/background segmentation, [21] used a few close-baseline stereo image pairs to segment every object
from both view references, although without performing any actual semantic classification of the resulting
blobs.

Multi-class multi-view semantic segmentation poses harder challenges and calls for larger datasets
(see Table 5.1), suitable for data-driven approaches. Different works leverage with varying emphasis the
complementary information provided by additional views: [135] extends the Leuven stereo dataset with
semantic labels in one of the views to jointly train for segmentation and stereo reconstruction. A few works
focus on cross-view semantic transfer, with an unsupervised transfer of the semantic annotations to new
label-free views, e.g. ground to aerial views [288] or among distinct vehicle-mounted cameras [45] in
close-baseline footage from [60]. Both tasks demand datasets comprising two or more 2D RGB views,
with annotations in each of them. Our work is most closely related to these. SYNTHIA [224] provides
pixel-wise depth and semantic labels for a large synthetic set of scenes captured from a vehicle-mounted 8
RGB camera-rig, thus showing the usual narrow baseline of camera-centric driving setups. The wide baseline
scenario has so far only been tackled by the Human3.6M [107] and 3DPeople [201] datasets. They both
provide body part [107, 201] or clothing [201] segmentations, but [201] has immutable 2D backgrounds, and
they are both restricted to single subjects and thus limited in the severity of the occlusions and subject size
variation across views.

Several recent papers [49, 160, 164, 218] leverage the spatial consistencies in temporal sequences of RGB
or RGB-D images with small relative baselines among them to address semantic segmentation of either 2D
images or their reconstructed 3D representations. The raw sequences of the NYUv2 [243], Camvid, ETHZ
RueMonge 2014 [218] or the ScanNet [48] datasets are commonly used to achieve this.

Furthermore, various large scale 3D virtual or reconstructed environments have been released. Their
relevance comes from the fact that, through significant user intervention, parts of the 3D model and associated
labels could be projected back to 2D to synthesize semantically annotated multi-view image sets from arbitrary
camera locations with different degrees of realism. The House3D [276], Gibson [278] and CARLA [60]
environments are some relevant examples, although only CARLA, being fully virtual, could yield high object
densities via its API. This was shown in [183] for close baseline setups, proposing a multi-view semantic
fusion scheme from up to 8 input views onto a new virtual zenithal view.

In conclusion, MVMO covers the lack of a standardised large scale photo-realistic multi-view dataset
with wide-baselines (and hence, large disparities and relevant occlusions) across cameras and comprising
semantic segmentation annotations for multiple objects of distinct classes.

5.3 MVMO Dataset construction
We set out to construct a synthetic dataset for semantic segmentation, that fills the existing lack of wide-
baseline multi-view multi-object datasets. Therefore, we use Blender’s Python API for procedural 3D
scene construction and image rendering, using the ModelNet10 3D object dataset [277] as repository of
well-categorized 3D shapes of 10 common object classes (i.e. bathtub, bed, chair, desk, dresser, monitor,
night_stand, sofa, table, toilet). We build a basic scene with a grey plane at z = 0 and a single zenithal
rectangular key light, and define a 2.8×2.8m rectangular area for object placement. All cameras are projective
cameras with a focal length of f = 35mm, oriented to the origin. The camera locations are determined by
sampling the surface of a hemisphere of r = 3m regularly so that they are equidistributed [55]. For our set of
25 samples, this yields locations at four levels (Fig. 5.1-top and Fig. 5.2): 1 view at L0 (top, at z = 3.0m), 3
views at L1 (z = 2.90m), 9 views at L2 (z = 2.12m) and 12 views at L3 (z = 0.78m).
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Figure 5.2: Ortogonal lateral and zenithal projections of the set of camera locations distributed in four levels
(L0-L3). Highlighted cameras show the poses used in the experiments in section 5.4.

Then, for each scene: (i) we randomly select one of the 10 categories of ModelNet10 and (ii) sample one
shape from the selected class, (iii) we normalize its scale so that its largest dimension is 1.0m, then applying
a random scale in the [0.3−0.8] range, (iv) we select a random base-color from a set of 9,284 predefined
ones [131] and apply a random combination of the specularity, roughness and metallic material modifier
properties that -together with other fixed property values- define the Bidirectional Scattering Distribution
Function (BSDF) of the materials applied to the whole shape. (v) we place it on the z = 0 plane of our
base scene, in a random location (within the designated limit area) and angle, checking that the mesh
does not intersect with any previously placed object. (vi) Once 15−20 objects are placed, the scene and
fine-detailed ground truth images are rendered with the Cycles engine for each of the 25 views at 256×256
pixels, producing photo-realistic, unbiased and physically consistent shading, reflectance and material effects,
including specularities, and interreflections.

The 116,000 created scenes (each with 25 views; see Figs. 5.3 to 5.7 for full samples of five random
scenes) were then partitioned in a train set (100,000), two validation and two test sets (4,000 each). The latter
are created based on whether the used ModelNet10 shapes were already used for the train set (SO: Same
Objects) or come from a held-out set of shapes (OO: Other Objects) from the same categories, which poses a
harder problem. Fig. 5.8 shows the resulting distributions of objects per category and scene for the train set.

This proposed wide-baseline multi-object dataset contains many occlusions, making semantic segmenta-
tion from a single view difficult. We think MVMO can facilitate research in multiple directions. We highlight
two of them: (i) Multi-view semantic segmentation: existing close-baseline datasets have only few occlusions.
Therefore, the proposed dataset makes for a more interesting setup for multi-view semantic segmentation.
(ii) Cross-view semantic transfer: this is an especially exciting research direction which can be performed on
MVMO. In real-life applications the dense labelling of all views is infeasible. Hence we believe that methods
need to be designed that can learn to perform multi-view semantic segmentation based on labels from only a
single view.
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Figure 5.3: The 25 views and semantic maps of a random MVMO scene, sorted from level L0 (left) to L3.
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Figure 5.4: The 25 views and semantic maps of a random MVMO scene, sorted from level L0 (left) to L3.
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Figure 5.5: The 25 views and semantic maps of a random MVMO scene, sorted from level L0 (left) to L3.
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Figure 5.6: The 25 views and semantic maps of a random MVMO scene, sorted from level L0 (left) to L3.
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Figure 5.7: The 25 views and semantic maps of a random MVMO scene, sorted from level L0 (left) to L3.
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Figure 5.8: Histograms of the train set distributions for (a) Objects per class (total) and (b) Number of objects
per scene.

Subset test (vt ) \ train (vr ) cam0 cam8 cam12 cam13 cam22

Other
objs.

L0.cam0 71.12 29.09 29.61 14.28 14.88
L2.cam8 24.63 70.21 70.16 28.14 28.54
L2.cam12 25.14 69.09 70.05 27.73 28.29
L3.cam13 12.18 31.26 31.46 59.18 58.72
L3.cam22 12.11 30.10 30.59 58.39 59.41

Same
objs.

L0.cam0 80.55 29.92 29.69 14.00 14.51
L2.cam8 27.11 77.90 77.71 27.24 27.46
L2.cam12 28.01 76.87 77.97 26.94 27.52
L3.cam13 12.90 32.16 32.29 65.87 65.69
L3.cam22 12.76 31.00 31.68 64.84 66.09

Table 5.2: IoU results for direct cross-view semantic transfer. Five models trained on 100% of the train set
(100k scenes). The models were trained on reference view (vr ) data pairs and tested on target view (vt ) data.

5.4 Experimental baselines
We run two baseline experiments for the cross-view semantic transfer problem. These experiments are
included to show that there is no simple solution to this task and it is indeed an open research problem.
To conduct them we select 5 representative views from three distinct levels: L0.cam0 (zenithal), L2.cam8,
L2.cam12, L3.cam.13 and L3.cam.22 (see Fig. 5.1). In both cases we use a U-Net [223] as our semantic
segmentation model, with an Imagenet-pretrained ResNet50 backbone.
Experiment 1. Cross-view semantic transfer via direct testing. We train an independent model with each
of the considered views and directly test them against every other camera’s test sets, without any specific
adaptation. Table 5.2 shows the results in terms of Intersection over Union (IoU): The diagonals correspond
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Figure 5.9: Failure cases from monocular models in the diagonals of Table 5.2. a) self-occlusion (golden
object) b) inter-object occlusion (sofa under the yellow desk) c) small objects (light pink and dark green
objects) d) ambiguity from specular inter-reflection (light blue object with reflections of the cyan one). Last
row shows a second view that could help solve the ambiguity.

to standard fully supervised single-view setups. We see that these improve as we adopt a higher perspective
of the scene. As one might expect, direct semantic transfer between cameras placed within the same level (e.g.
L2.cam8/L2.cam12) yields a minimal performance drop, on account of the quasi-invariance of the learned
representations to horizontal camera pose rotations (the objects were placed in the scene with a random
rotation, hence the features observed from both views are similar, except for the non-circular symmetry of the
placement area). However, the performance across views at distinct levels drops drastically, with the most
distant levels yielding the highest differences. Note, finally, the foreseeable performance generalization gap
between the OO and SO test subsets that favours the latter.

Fig. 5.9 shows some of the most common failure cases for monocular semantic segmentation models:
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Figure 5.10: Computation of the ground truth homography induced by the z = 0 plane that maps cameras
vt to vr (H z=0

t→r ). Left: rectangle located at the z = 0 plane as viewed by the zenithal camera vr =L0.cam0.
Center: same rectangle as viewed by camera vt =L2.cam8. We manually log the (x, y) coordinates of each of
the vertices in both views (adyacent colored patches were used to ease their identification) and compute H z=0

t→r
using four point correspondences by least-squares minimization of the back-projection error. Right: result of
using the H z=0

t→r homography to reconstruct the view vr from vt .

vr =L0.cam0→ vt =L2.cam8 vr =L2.cam8→ vt =L0.cam0

Other objs. Same objs. Other objs. Same objs.

28.72 31.29 24.35 24.84

Table 5.3: IoU results for planar homography-based transfer.

(i) self-occlusions and (ii) partial inter-object occlusions that hide relevant features of the object (resulting
in ambiguous geometry and appearances), (iii) distant/small objects and, less prominently, (iv) ambiguities
induced by appearance variations (e.g. specularities). All these cases could benefit from the complementary
information provided by the additional, significantly distinct perspectives of a multi-view setup. Nevertheless,
the way of constructively fusing such multiple-view information sources in data-driven models without
explicitly addressing a 3D representation of the scene is far from trivial, both in the multi-view and in the
cross-view semantic transfer cases.
Experiment 2. Planar homography-based transfer. Another baseline to model such geometric relation
between views in a cross-view semantic transfer scenario is that of a planar 3×3 homography. This model
holds well for quasi-planar scenes or relatively distant objects [93]. In this experiment, we first compute the
homography H z=0

t→r induced by the z = 0 plane that maps cameras vt (target view) to vr (reference view) using
four point correspondences (Fig. 5.10).

Then, in order to obtain a semantic map estimate from vt given a model trained on vr ( fvr →ssr ), we
proceed as follows: (i) transform the vt input to vr via H z=0

t→r (ii) feed this to fvr →ssr so as to obtain a
semantic map referenced to vr (iii) transform this back to be referenced to vt with the inverse homography
H z=0

r→t = (H z=0
t→r )−1. We test this on two cameras at distinct levels: L0.cam0 and L2.cam8. The lack of a

significant performance gain in the results (see Table 5.3) over the direct transfer baseline from Table 5.2
shows that, as expected, the planar homography fails to help for the general, wide-baseline case, in which
a good estimate of pixel-wise depth information from every secondary view is needed for unambiguous
matching. Fig. 5.11 shows the associated qualitative results for the transfer between vr =L0.cam0 and
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Figure 5.11: Qualitative intermediate and final results for the planar homography-based cross-view semantic
transfer case (i.e. Experiment 2), for the vr =L0.cam0→ vt =L2.cam8 transfer (Table 5.3, left). Given a model,
fvr →ssr , trained on (vr , ssr ) pairs, we want to feed it with inputs from view vt and obtain sst segmentation
results referenced to vt (sst ). Each column represents a random sample scene. From top to bottom rows:
a) vt , input at inference time. b) Result of applying H z=0

t→r to vt to get a planar homography-based estimate
of vr . Note the significant differences with f). c) Predicted ssr , result of feeding fvr →ssr with the planar
homography-based estimate of vr . d) Predicted sst , result of transforming the predicted ssr semantic map
back to the reference of vt using the inverse homography H z=0

r→t = (H z=0
t→r )−1. e) Ground truth for the task, sst .

f) Ground truth vr view of the scene, for reference and used for training of the fvr →ssr model. g) Ground
truth ssr semantic map, for reference and used for training of the fvr →ssr model.

vt =L2.cam8 for eight random samples, also showing every intermediate result. Meanwhile, Fig. 5.12 depicts
the same content —for the same samples— for the transfer from vr =L2.cam8 to vt =L0.cam0.

The failure of both experimental baselines, along with the fragility of photometric cues in wide baseline
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Figure 5.12: Qualitative intermediate and final results for the planar homography-based cross-view semantic
transfer case (i.e. Experiment 2), for the vr =L2.cam8→ vt =L0.cam0 transfer (Table 5.3, right). See Fig. 5.11
for the legend for each row.

scenarios [282], suggests that exploiting the complementary information given by additional views of the
scene in a data-driven multi-view learning setup or transferring the knowledge from trained models across
views in unsupervised scenarios will require the development of new theoretical approaches.

5.5 Conclusion
We presented MVMO, a wide baseline multi-view synthetic dataset with semantic segmentation annotations
that features a high object density and large amount of occlusions. We expect MVMO will propel research in
multi-view semantic segmentation and cross-view semantic transfer and, likely through domain adaptation,
address the current limitations of monocular setups in heavily-occluded real world scenes.
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6
Zero-Pair Semi-Supervised
Cross-View Semantic Segmentation

6.1 Introduction
We present the semi-supervised task of zero-pair, cross-view semantic segmentation (Fig. 6.1). Given a
labeled dataset Dl of pairs of RGB and semantic segmentation annotations under a certain reference camera
viewpoint vr , we would like to change the camera pose to a new location and orientation and, without any
further annotation, be able to keep producing semantic segmentation predictions under the reference point of
view vr , as well as under the new target viewpoint vt . In addition to this, we assume that we have access to a
second -unlabeled- cross-view dataset of RGB image pairs, Du , comprising synchronized pairs of reference
(vr ) and target (vt ) projections of scenes not contained in the first -labeled- dataset, i.e. both datasets are
disjoint with respect to the scenes they represent.

However, at no moment do we have available any pair of (RGB, dense semantic label) images where the
input RGB image is taken under the target viewpoint vt , regardless of the reference view of the labels. We
thus characterize the problem as zero-pair [242, 271]. It can also be thought of as a semi-supervised learning
task, since, even if we can learn an RGB-semantic mapping in the reference view, the problem requires of
unsupervised semantic knowledge transfer from source to target viewpoint. Such transfer of information
across views is notably challenging even in supervised settings, particularly so whenever the object density is
high and when the camera pose change falls within the category of wide baseline scenarios, i.e. those where
the distance between cameras (and thus, the resulting disparities) is significant compared to the distance to
the scene objects.

The described scenario naturally fits in industrial contexts, where many in-line production systems rely
on semantic segmentation for the inspection of goods carried on conveyor belts, often with remarkable
upfront annotation costs. It is often the case that hardware updates need to be carried out on the machine that
affect the original placement of the sensor, requiring a new, distinct location for it. In such cases, it may be
infeasible -or extremely costly- to capture and re-annotate new scenes from the new perspective. Furthermore,
such relocation may well affect downstream vision or manipulation systems, which still expect predicted
coordinates referenced to the source camera pose. The problem thus calls for a flexible approach that enables
cheap camera relocations without the need for new annotations. In this regard, it would be comparatively
cheap to temporarily use a second camera to capture a number of scenes from both perspectives, without any
annotation.

These setups cannot be approached by a naive application of models trained on the source domain nor
with simple geometric tools as planar homography-based warping (Fig. 6.2). In fact, a successful model
should leverage the complementary information provided by cross-view image pairs to fill, at inference time,
the occluded parts with the learnt geometric and appearance priors. This also constitutes a potential building
block for multi-view semantic segmentation scenarios, where diverse target views contribute to enhanced
reference view prediction, bypassing the occlusion-caused ambiguities inherent to monocular systems.

In this chapter, we make the following contributions: (i) we introduce the semi-supervised task of zero-pair
cross-view semantic segmentation to tackle cheap fixed camera relocations on established semantic labeling
systems. (ii) We present ZPCVNet: a model comprising several deep convolutional neural encoder and
decoder modules and a cross-view transformation module to achieve latent space alignment. This enables
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Figure 6.1: The task of zero-pair, semi-supervised cross-view semantic segmentation: given a reference-view,
labeled segmentation dataset and an unlabeled cross-view dataset, and given a test RGB input on the target
view’s frame, predict the semantic labels referenced to i) the source/reference view and ii) the target view.

producing semantic maps referenced to both source and target viewpoints simultaneously from the new
camera location, without the requirement of any additional labeling. (iii) Results show that our method can
obtain semantic segmentation results for viewpoints that lack any semantic segmentation ground truth.

6.2 Related work
Our work relates to a number of previous approaches across various research fields:
Multi/cross-view computer vision. Several classic computer vision areas have approached their tasks from
a wide-baseline multi or cross-view perspective: [221] addressed the detection of pedestrians, cars and buses
from 6 calibrated cameras in an attempt to improve the single-view performance. Human pose estimation has
been a particularly fertile field, propelled by the existence of large scale, wide baseline multi-view datasets
such as Human3.6M [107], ITOP [92] or 3DPeople [201]. [92] learnt viewpoint-invariant features to address
pose estimation from diverse viewpoints over depth inputs. [118] relied on 2D part detectors in a simultaneous
multi-view RGB input scenario, while [203, 281] exploited multiple-view geometry-related priors and [293]
incorporated additional time consistency cues to propagate the annotations across views.

The area of novel view synthesis has also emerged with vigour, impulsed by recent advances in generative
modeling [58, 102, 127, 254, 304], and the use of a diverse set of alternatives for scene representation and
rendering of novel views that have enabled the use of 2D projections for supervision. Generative Query
Networks [64], 3D point clouds [274] and Neural Radiance Fields [166] are representative examples.
Multi/cross-view semantic segmentation. Research on transferring or fusing dense semantic knowledge
across views has been hindered until recently by the lack of large scale, photo-realistic, annotated datasets
with wide baselines and high object densities. This limited the existing works to (i) cases with a modest
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Figure 6.2: Without depth information, planar homography is the only geometrical tool available for cross-
view pixel to pixel mapping. However, it fails for wide baseline or non-planar scenes: i) target view ii)
reference view iii) ground truth planar homography-based target→reference cross-view transform.

magnitude of the viewpoint change [45] (ii) approaches for 3D model segmentation [49, 90, 125] and/or
for segmentation from RGBD or 3D inputs [90, 160, 279] (iii) the domain of aerial to/from ground view
transfer [288], in which segmentation was sometimes also addressed as an auxiliary task for mutual benefit
with the main goal of novel view synthesis [211]. Such multi-task approach is also often found naturally
together with 3D structure reconstruction problems [21, 90, 135]. Besides, only a few of the works in the
field produce their semantic predictions in a reference frame other than that of the input RGB image: [183]
yield top-view semantic maps from the fusion of up to 8 cameras in a camera-centric, narrow baseline setup,
and [288] generates rough ground-view semantic maps from aerial imagery. The first problem, i.e. the lack
of an adequate dataset, was addressed in Chaper 5 with the release of the wide-baseline, occlusion-heavy
MVMO dataset. Meanwhile, this chapter addresses the latter by proposing ZPCVNet as the first model able
to obtain predictions in both references.
Multi-view geometry-aware approaches. A handful of the aforementioned works complement data-
driven approaches by posing constraints on the network topology or cost function inherited from what we
already know from classic multiple-view geometry [93], such as various representations of the epipolar
constraints: [95, 203, 281] for body and hand pose estimation, [240] for depth, semantic label and view
synthesis, [200] for depth and egomotion prediction or [282] for single class co-segmentation. Unlike
our approach, while these inductive biases effectively restrict the solution space, they usually require the
calibration of the cameras.
Mix and Match Networks. Our work is most closely related to Mix and Match Networks [270, 271],
and partially builds upon their idea of aligning the latent representations of multiple encoders and decoders
from/to different modalities to achieve zero-pair cross-modal image-to-image translations between unseen
modality pairs (e.g. depth to semantic labels from RGB to semantic labels and RGB to depth). Functionally,
though, their work is limited to domain shifts consisting of perfectly pixel-paired modality changes, while
ours addresses simultaneous modality (RGB to semantic labels) and viewpoint (i.e. spatial distribution) shifts.

6.3 Zero-pair cross-view semantic segmentation
We address the problem of cross-view semantic transfer. In this task, dense ground truth semantic annotations
yr ∈ {1...C } for C classes are available for RGB images xr acquired from a reference or source view vr . We
consider the scenario where we move the camera location to a new -target- viewpoint vt , for which we have
no annotations but still want to predict the semantic segmentation in either reference or target viewpoint.
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Figure 6.3: The proposed zero-pair, semi-supervised cross view semantic segmentation model, including the
Cross View Transformer. Train and test stages are shown, with the test setup yielding predictions referenced
to both vr and vt . Equal modules share weights.

Direct application of a model fr learned in a fully supervised way on the source view is expected to achieve
sub-optimal results. Another solution would be a fully supervised approach, which implies capturing and
annotating a whole new dataset referenced to the new point of view (xi

t ,l , y i
t ,l )∀i ∈Dt ,l .

As opposed to this, we propose a setup in which, in addition to the fully labeled reference view dataset
Dr,l = (xi

r,l , y i
r,l ) ∀i = 1...M , we collect an additional cross-view image set of unlabeled but synchronized RGB

image pairs corresponding to distinct views of the same scene, Du = (x j
r,u , x j

t ,u) ∀ j = 1...N . Note that these
datasets are disjoint; therefore there exists no matching scene contained in both labeled and unlabeled sets;
i.e. xi

r,l ̸= x j
r,u for any possible i , j pair. This is a realistic setting: in practice, in industrial scenarios the need

to place the camera in a different pose often occurs due to redesign of the setup. Under these circumstances, a
naive approach would require to start the annotation altogether. Instead, our approach is able to exploit the
annotations already collected for dataset Dr,l , together with paired but unlabeled images of new scenes that
should be relatively cheap to obtain when compared to the cost of gathering dense semantic annotations.

In this context, cross-view semantic segmentation consists of, given an unseen input RGB image xt

taken under the target viewpoint vt , predict its corresponding semantic labels, either under the reference
or target viewpoint (ỹr , ŷt ), respectively (a note on notation: we use tilde˜for cross-view predictions, and
hatˆotherwise). Initially, we will take ỹr as our primary target task. Section 6.4.2 shows how we can obtain
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ŷt predictions under the new target view.

6.3.1 Zero-pair cross-view: the vanilla model
Our model (see Fig. 6.3) contains a set of convolutional encoders and decoders arranged so that their latent
representations get aligned after training, thus enabling the direct coupling of unpaired modules to map
previously unseen domains. The first major block (Er −Gr ) is a semantic segmentation net, composed of
a convolutional encoder Er that takes as input the RGB images from the source view vr and generates a
compact, bottleneck representation of them, and a decoder Gr that takes such latent features and yields dense
semantic labels in the same reference viewpoint:

ŷ i
r,l =Gr (Er (xi

r,l )) (6.1)

This block on its own corresponds to the simple monocular fully supervised baseline, and it is supervised
with a pixel-wise categorical cross-entropy loss LSS (see section 6.3.4). To exploit the information of the
unlabeled image pairs, and inspired by [270], we place two auxiliary blocks:

A reference-view autoencoder (Er −Fr ), that aims at reconstructing the input view. This component will
operate on inputs sampled from both the labeled and unlabeled datasets, as it requires no annotation:

x̂i
r,l = Fr (Er (xi

r,l )) (6.2)

x̂ j
r,u = Fr (Er (x j

r,u)) (6.3)

where Fr is a decoder generating the reference view. This component is supervised via a reconstruction loss,
LDR .

A cross-view encoder-decoder block (Et −Fr ) that takes RGB images from the target view vt and
transforms them by generating, at the output, an RGB representation of the same scene as seen from the
reference view vr :

x̃ j
r,u = Fr (Et (x j

t ,u)) (6.4)

We attach a cross-view reconstruction loss LC R between predicted and ground truth reference views to
supervise this.

Although introduced as separate components here for clarity, note that the reference view encoder Er used
in the fully supervised semantic segmenter Er −Gr and autoencoder Er −Fr blocks is sharing weights in both
tasks. This is equally true for the Fr reference view RGB decoder, used in both (Er −Fr ) and (Et −Fr ) blocks.

The rationale behind these three encoder-decoder blocks is to seek the alignment of the latent representa-
tions at the bottlenecks of the aforementioned encoder-decoder pairs during the training process. By doing
so, at inference time we could take the trained target view encoder Et and reference view semantic labeling
decoder Gr out of the training setup, directly connect them and obtain semantic segmentation predictions
referenced to the source view for RGB inputs captured from the target view:

ỹk
r,test =Gr (Et (xk

t ,test )) (6.5)

where xk
t ,test is sampled from the test set Dt→r,test = (xk

t ,test , yk
r,test ) ∀k = 1...P . Note that this cross-view

semantic transfer is unsupervised, since during training we have no access to the ground truth referenced to
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vt .
Both reference and target view encoders (Er and Et ) should generate similar latent representations when

fed with RGB captures depicting the same scene from both viewpoints, and the reference view decoder Fr

should yield consistent reconstructions from them both. In this setup, the latent space may be interpreted as a
view-free representation of the scene, containing representative information for both RGB and segmentation
reconstructions on the reference view. To further enforce the latent space alignment, we pose an additional
feature similarity loss LF S (see section 6.3.4) between features obtained from both encoders, Er and Et . In
practice, however, such equilibrium showed to be hardly achievable (see section 6.4). As a consequence, two
additional components are discussed in sections 6.3.2 and 6.3.3.

6.3.2 CVT: Cross-View Transformer
In the vanilla model described above, the latent space is conceived as a viewpoint-free one. In consequence,
every encoder-decoder block must allocate part of its capacity to disentangle and discard (encoders) or blend
(decoders) the viewpoint-dependent information. To discharge the different modules from such duty, we
instead place an explicit Cross-View Transformer* (CV Tt→r ) module at the output of the target view encoder
Et , so that the cross-view encoder-decoder block is now defined as Et −CV Tt→r −Fr .

The Cross-View Transformer module is defined as a function CV Tt→r :Rh×w×c →Rh×w×c with:

CV Tt→r = f −1(W · f (x)) (6.6)

where f : Rh×w×c → Rhw×c is a flattening operation on the spatial dimensions of the latent features, f −1 :
Rhw×c →Rh×w×c is the reciprocal operation of recovery of the original shape, and W ∈Rhw×hw corresponds
to the weights of a single linear layer with dense connections among each of the spatial locations of the
features. The intuition of the CVT is that of a layer operating only on the spatial dimensions, thus applying in
parallel the same learnt weighted location mixture to every activation map from the latent representation. This
allows to spatially reorganize the latent representation to align with the convolutional decoder. An analogous
approach was shown to help transfer features across views in [183], where a bank of multi-layer perceptrons
was applied over embeddings obtained from depth, RGB and even semantic label images. However, this was
applied on a fully supervised setup, while our aforementioned constraint of Dr,l and Du being disjoint sets
prevents us from being able to perform a straightforward cross-view supervision on (xt , yr ) pairs.

We can now, therefore, update eq. (6.4) and eq. (6.5):

x̃ j
r,u = Fr (CV Tt→r (Et (x j

t ,u))) (6.7)

ỹk
r,test =Gr (CV Tt→r (Et (xk

t ,test ))) (6.8)

while the feature similarity loss LF S is now applied at the output of the CVT. This enforces the latent
representation of the overall model to be referenced to vr .

We found that, in the absence of geometrically calibrated cameras and depth information from any of the
viewpoints (which would allow us to exploit the epipolar constraint [95] or get a pixel-wise projection of
the segmentation onto the other view [45], respectively) the data-driven CVT module successfully models a
cross-view transfer of the features by learning to predict the corresponding 2D location projection of every

*The usage of the term Transformer throughout this chapter differs from its most widespread meaning accross the computer vision
community as of 2022, i.e. we do not refer to Transfomers as in [262].
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feature vector (of length c) from the target view vt in the reference view vr . Notably, this approach requires no
explicit 3D reconstruction of the scene at hand, and we gain interpretability, as the geometric transformation
is encapsulated in a single component. Furthermore, factoring out the cross-view transformation in a specific
module provides an additional benefit: we can now obtain predictions referenced not only to vr , but to vt as
well with no need for additional training, by just removing the CVT component. We show this as Experiment
2 in section 6.4.2 and Fig 6.3.

6.3.3 Pseudolabels
With the presented components, the feature alignment between Et and Gr , required at inference time, is
achieved indirectly via the use of the reference view encoder Er and decoder Fr . Such setup fails to extract
and leverage the shared information between the unpaired domains, i.e. between the RGB inputs from the
target view and the segmentation outputs from the source view. Following [270], we instead explicitly enforce
such representation alignment by introducing a new block at train time: a cross-view semantic segmentation
one (Et −CV Tt→r −Gr ), which takes RGB inputs from the target view (thus from the unlabeled set) and
yields semantic label predictions on the source view reference. This reproduces the inference time scenario:

ỹ j
r,u =Gr (CV Tt→r (Et (x j

t ,u))) (6.9)

Given the lack of ground truth for the unlabeled dataset, the training of these modules is supervised via the
ŷ j

r,u predictions obtained by feeding the Er −Gr block with the reference view input taken from the unlabeled
dataset:

ŷ j
r,u =Gr (Er (x j

r,u)) (6.10)

These can be thought of as the pseudo-labels often found in the field of domain adaptation [306], which will
be used as ground truth when posing a pixel-wise categorical cross-entropy loss LPL(ỹ j

r,u , ŷ j
r,u) between both

predictions. This allows us to leverage the correlation between the features of both domains. Note again that
the components of this new block are sharing their weights with those named equally in other blocks. We
name the resulting full model ZPCVNet (Zero-Pair Cross-View Net).

6.3.4 Training process and loss functions
The model training process is as follows: At each iteration, two equal-sized mini-batches are drawn, each one
from one of the Dr,l and Du datasets: (xi

r,l , y i
r,l ) and (x j

r,u , x j
t ,u) ∀i , j = 1...B , respectively. After feeding the

different encoders with the (xi
r,l , x j

r,u , x j
t ,u) RGB inputs, the predictions obtained from equations (6.1), (6.2),

(6.3), (6.7), (6.9) and (6.10) are assessed by means of the following compound loss:

L =λSSLSS +λDRLDR +λC RLC R +λF SLF S +λPLLPL (6.11)

where λSS ,λDR ,λC R ,λF S and λPL are the hyper-parameters to balance the importance of each term. This is a
multi-task objective comprising:

• A fully-supervised semantic segmentation loss (pixel-wise class-weighted cross-entropy), which conducts
the pixel classification using the paired reference RGB and the semantic segmentation:

LSS =C E (ŷ i
r,l , y i

r,l ) =C E (Gr (Er (xi
r,l )), y i

r,l ) (6.12)
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• An ℓ2 direct-reconstruction loss on the auto-encoder predictions from both mini-batches, which tries to
reconstruct the input RGB for both the label and unlabeled data:

LDR = 1

2

∥∥∥x̂ j
r,l −x j

r,l

∥∥∥
2
+ 1

2

∥∥∥x̂ j
r,u −x j

r,u

∥∥∥
2

(6.13)

• An ℓ1 cross-view reconstruction loss to perform cross-view prediction from the unlabeled target view RGB:

LC R =
∥∥∥x̃ j

r,u −x j
r,u

∥∥∥
1
=

∥∥∥Fr (CV Tt→r (Et (x j
t ,u)))−x j

r,u

∥∥∥
1

(6.14)

• An ℓ2 feature similarity loss to align the latent representations at the output of the Er and Et −CV Tt→r :

LF S =
∥∥∥CV Tt→r (Et (x j

t ,u))−Er (x j
r,u)

∥∥∥
2

(6.15)

• A pixel-wise class-weighted categorical cross-entropy loss to conduct the pixel classification by using the
pseudo-labels for the cross-view semantic predictions from the unlabeled target view input:

LPL =C E (ỹ j
r,u , ŷ j

r,u) =C E (Gr (CV Tt→r (Et (x j
t ,u))),Gr (Er (x j

r,u))) (6.16)

Although we are able to train our model end-to-end, we found it easier, in practice, to run a two-stage
training: we first pretrain the Er −Gr block alone in a fully supervised fashion. Then, we add the remaining
blocks, so that (i) the Er encoders are initialized from the pretrained weights and unfrozen, (ii) the Gr semantic
decoders are initialized from the pretrained weights but kept frozen, and (iii) the Fr decoder and the CV Tt→r

are trained from scratch.

6.4 Experimental validation
We conduct two experiments on the MVMO (Multi-View, Multi-Object) dataset (see Chapter 5) to validate
our approach, presented in sections 6.4.1 and 6.4.2 for cross-view semantic predictions ỹr , ŷt , referenced
to vr and vt , respectively. MVMO is partitioned in one train set (100,000 scenes, each with 25 views), two
validation sets and two test sets (4,000 scenes each). In our experiments, we split the train set in two disjoint
sets of 50,000 scenes, corresponding to the Dr,l and Du datasets, and we evaluate on the other_objects (OO)
test set. We run our tests on 64×64 inputs focusing on two of the 25 cameras: L2.cam8 as our reference view
vr , and L0.cam0 as our target view vt . The latter provides a perfectly orthogonal (zenithal) view of the scene,
while L2.cam8 captures an oblique perspective (see Fig. 6.4 and Fig. 6.5). The relative pose change involves
significant translation and rotation, and can be considered a wide baseline setup.
Network architecture. We design our network topologies taking inspiration from [83]. Both encoders
(Er ,Et ) share the same architecture. Their design, for the input size of 64×64 employed in our experiments,
is as follows: C (3,64)−LR −C (64,128)−B N −LR −C (128,256)−B N , where (i) C is a 2D convolutional
layer with the indicated input and output channels, 4×4 kernel size and stride of 2, (ii) LR is a Leaky ReLU
with a negative slope of 0.2, and (iii) BN is a Batch-Normalization layer with ϵ= 10−5 and momentum=0.1
This architecture leads to a spatial bottleneck feature size of 8×8 and 256 channels. The output of Et is then
forwarded through the CVT module, which is a fully connected layer (64×64+64 = 4160 parameters). The
decoders (Fr ,Gr ) differ only in the number of output channels (3 and 11, respectively). Their topology can
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Figure 6.4: (left) sample 3D scene from the MVMO dataset and location of the 25 available cameras. The
two camera locations used in our experiments are highlighted. (right) rendered views (256×256) and ground
truth for the selected cameras: vt =L0.cam0 (top) and vr =L2.cam8 (bottom).

Figure 6.5: Three additional views of the location of the two cameras employed in our experiments (high-
lighted) in the surface of the upper hemisphere of a sphere of radius r = 3m: (a) Frontal view, orthogonal
projection, showing the location of L0.cam0 and L2.cam8 in levels L0 and L2, respectively. (b) Zenithal view,
orthogonal projection. (c) Oblique view, perspective projection.

be summarized as: R −TC (256,128)−B N −D −R −TC (128,64)−B N −D −R −TC (64,3/11)−B N , where
(i) R is a regular ReLU (ii) T C represents a 2D transposed convolution with the indicated input and output
channels, a 4×4 kernel size and a stride of 2 (iii) B N is a Batch-Normalization layer with ϵ = 10−5 and
momentum=0.1 (iv) D is a Dropout layer with a 0.5 dropout rate.
Training details. For each experiment run, we kept the model that optimized the Intersection over Union
(IoU) on the validation subset, and conducted a hyperparameter search over these, then reporting over
MVMO’s OO test subset. We used a batch size of 128 for all our reported results, where 64 images were
sampled from each of the datasets. The experiments run for a maximum of 500 epochs, using a Stochastic
Gradient Descent (SGD) optimizer with a learning rate of 10−3, a weight decay of 10−4 and a momentum of
0.9. The weighting factors found by cross-validation are: λSS = 10,λDR = 1,λC R = 1,λF S = 10 and λPL = 100.
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Method Trained on bathtub bed chair desk dresser monitor nightstand sofa table toilet noBG Avg.

FSCV xi
t ,l , y i

r,l ∼D+
r,l 04.81 03.54 04.43 00.00 00.00 00.00 05.64 00.00 04.43 00.00 02.29 07.45

CVtest vr xi
r,l , y i

r,l ∼Dr,l 02.53 03.28 00.82 01.14 01.27 02.42 00.59 02.92 01.56 00.55 01.71 07.04
CVtest vt xi

t ,l , y i
t ,l ∼D+

r,l 02.22 02.65 02.82 03.11 03.28 02.58 03.58 02.47 02.08 02.81 02.76 07.81
Homography xi

r,l , y i
r,l ∼Dr,l 06.25 09.48 01.22 03.14 01.68 04.59 01.03 07.76 03.79 01.72 04.06 10.65

Mix&Match [270]
xi

r,l , y i
r,l ∼Dr,l

x j
r,u , x j

t ,u ∼Du
02.04 03.28 03.47 04.32 02.46 03.84 01.63 03.00 02.57 03.95 3.06 08.33

ZPCVNet (ours)
xi

r,l , y i
r,l ∼Dr,l

x j
r,u , x j

t ,u ∼Du
17.73 21.47 14.33 10.81 18.52 22.82 22.73 12.81 14.29 20.42 17.59 23.10

Table 6.1: IoU for experiment 1 on MVMO’s OO test set: cross-view semantic transfer with RGB test set
inputs captured from target view vt and predictions referenced to source view vr . noBG: Average of all
classes but background.

Figure 6.6: Experiment 1 results for ZPCVNet. Rows: i) vt input ii) corresponding vr iii) ground truth in vr

iv) ZPCVNet prediction (ours) in vr .

6.4.1 Experiment 1: cross view with output in vr

Our first cross-view semantic transfer experiment corresponds to the case where we place the new camera on
the vt pose but we wish to obtain the prediction of our model still referenced to the source view, vr . All the
testing is therefore run on the (xk

t ,test , yk
r,test ) pairs of the Dt→r,test test set.

Baselines. In order to validate the suitability of our approach, we consider the following baselines: (i) FSCV
(Fully-Supervised Cross-View): this represents the supervised solution for the task. We use the Et −Gr block
to obtain a directly supervised cross-view model, in charge of learning both the semantic labels and the
cross-view knowledge transfer, which has been shown to be a difficult task [183]. We train this on (xi

t ,l , y i
r,l )

pairs drawn from the D+
r,l dataset, an extension of Dr,l including the target view and ground truth of the
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same scenes but under vt : xi
t ,l , y i

t ,l ∼D+
r,l . (ii) CVtest vr : we run a fully supervised training (using only the

Er −Gr block with LSS) on the 50,000 (xi
r,l , y i

r,l ) pairs of the Dr,l dataset, i.e. training and testing are carried
out on the reference view. We then directly evaluate the learnt model on (xk

t ,test , yk
r,test ) pairs, without any

adaptation. This corresponds to a lower bound for our setup, i.e. the system’s performance evaluated on the
original viewpoint’s reference, should we just move the camera and do nothing (we would expect this to
fail). (iii) CVtest vt : we repeat this for the target view, training on (xi

t ,l , y i
t ,l ) pairs from D+

r,l and evaluating on
(xk

t ,test , yk
r,test ). (iv) Homography: a 4×4 homography can serve as a deterministic mapping between two

2D scene projections. However, in order to exploit it, we would require having per-pixel depth information
from the source of the projection. In the absence of such dense depth values, a planar 3×3 homography can
work as a baseline tool to model the relation between views. Unfortunately, such model holds well only for
quasi-planar scenes or relatively distant objects [93], neither of them being the case. Nevertheless, in this
experiment we compute the homography induced by the z = 0 plane that maps cameras vt to vr (H z=0

t→r ) using
four point correspondences [215] (we could, alternatively, learn the 9 parameters of the matrix as part of
the model from (x j

r,u , x j
t ,u) pairs and a photometric loss, but pre-computing it provides an upper bound to

this homography-based approach). We then compute our prediction as: ỹk
r,test =Gr (Er (H z=0

t→r (xt )))), where
the Er −Gr block can be pretrained in advance. (v) Mix&Match Networks [270]: We implement and run a
Mix&Match variant by extending the vanilla ZPCVNet with bidirectional transforms and pseudolabels.
Results. Table 6.1 shows the Intersection over Union (IoU) obtained both with our model and the presented
baselines, while Fig. 6.6 shows some samples. We observe that, with IoU values of 23.10, our full ZPCVNet
model outperforms every other baseline by a large margin, homography being the runner-up 12.45 points
behind. Note, for reference, that the CVtest ,vr model evaluated on source view pairs (i.e. the original
monocular system) scored an IoU of 33.43. Interestingly, the FSCV upper bound fails to learn any significant
mapping, and yields unusable results that are close to the naive CVtest ,vr approach, evidencing the difficulty
of the proposed problem. Our Mix&Match implementation is also unsuccessful in modeling the cross-view
transformation, and scores below the homography, which does not use the unlabeled dataset. These results
confirm the importance of the CVT module (absent in Mix&Match and FSCV) for cross-view semantic
segmentation. Fig. 6.7 shows a visual comparison of our results for some additional sample scenes, together
with the results from every other considered method. We observe that our method is the only one providing
reasonable predictions both in terms of spatial structure and predicted classes. For the specific case of the
planar homography-based baseline (Homography), Fig. 5.10 depicts the scene and image pair employed in
the offline computation of the 3×3 homography (induced by the z = 0 plane) relating both views. Meanwhile,
Fig. 6.8 shows the intermediate output at each of the steps taken during the execution of such baseline. We can
observe that, as expected, the mapping of non-planar objects is not correctly achieved due to the wide-baseline
setup: the distance between cameras and the distance between camera and scene objects are in the same order
of magnitude, while the planar homography approach would only perform satisfactory mappings on planar
objects or on setups where the inter-camera distance is much shorter than the camera-objects distance. The
large amount of occlusions from MVMO renders the task even more challenging.
Ablation study. We now conduct an ablation study (Table 6.2) so as to determine the contribution of the
pseudo-labels and CVT to the results. Surprisingly, none of them are, on their own, able to significantly boost
the predictive performance of the vanilla model. In fact, it is the simultaneous action of both components that
enables the success of our full ZPCVNet model in the setup from experiment 1.
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Method CVT PL noBG Avg.

Vanilla No No 03.17 09.26
Vanilla+PL No Yes 02.80 08.70
Vanilla+CVT Yes No 05.73 11.41
ZPCVNet (full model) Yes Yes 17.59 23.10

Table 6.2: IoU results for the ablation study of our approach over experiment 1 on MVMO’s OO test set. First
two rows correspond to basic variants of Mix&Match [270], in which only one directional transformations
are leveraged. PL: Pseudo-labels.

Method Trained on bathtub bed chair desk dresser monitor nightstand sofa table toilet noBG Avg.

FSvt ⋆ xi
t ,l , y i

t ,l ∼D+
r,l 30.86 33.11 24.70 18.88 25.19 29.39 33.06 22.14 11.80 32.35 26.15 31.67

CVtest xi
r,l , y i

r,l ∼Dr,l 09.87 10.50 03.39 04.67 03.67 09.16 03.15 10.91 05.96 04.31 06.56 13.29
Homography xi

r,l , y i
r,l ∼Dr,l 06.49 08.49 01.12 03.10 02.03 05.11 01.46 06.96 05.97 02.35 04.31 10.42

ZPCVNet (ours)
xi

r,l , y i
r,l ∼Dr,l

x j
r,u , x j

t ,u ∼Du
16.40 17.07 09.57 10.13 06.54 14.87 06.73 14.95 11.20 11.80 11.93 18.10

Table 6.3: IoU for experiment 2 on MVMO’s OO test set: cross-view semantic transfer with RGB test set
inputs captured from target view vt and predictions referenced to vt . ⋆: Upper bound. noBG: Average of all
classes but background.

6.4.2 Experiment 2: cross view with output in vt

In the second cross-view semantic transfer experiment, the goal after modifying the camera pose from vr to
vt is to yield predictions referenced to vt . Hence, we extend our Dt→r,test test set to include the target view
ground truth yk

t ,test as well, so that we can use (xk
t ,test , yk

t ,test ) ∼D+
t→r,test for evaluation. Instead of posing a

new model aimed at achieving this, we take our setup trained from experiment 1 (section 6.4.1) and keep
only the Er and Gr components, plugging the CVT module in between them out and feeding the output of Er

directly into Gr .
Baselines. We run the following baselines and bounds: (i) FSvt : we take the model trained in the CVtest vt

case from section 6.4.1 and test it on (xk
t ,test , yk

t ,test ), target view pairs. This is a fully supervised upper bound
to our task, should we have available the ground truth for such target view. (ii) CVtest : we run the simple
baseline of directly applying the fully supervised Er −Gr model trained on reference (RGB, semantic) pairs
to the (xk

t ,test , yk
t ,test ) pairs. (iii) Homography: we extend the approach from section 6.4.1, with the additional

step of projecting the semantic prediction ỹk
r,test back to the target viewpoint using the inverse homography

H z=0
r→t = (H z=0

t→r )−1.
Results. Table 6.3 shows that, with an IoU of 18.10, our approach yields a 36.2% performance gain over
the best baseline, the naive application of the model trained in the reference view. The discrete results of
the homography (see Fig. 6.8 for visual outcomes), consistent with those presented in Table 6.1, can be
explained by the fact that the model fed with the homography-projected images never saw such kind of
features during training. Fig. 6.9 shows some corresponding visual results as compared with the rest of the
proposed baselines and upper bounds. Our model, trained as explained to yield its output in the frame of
the reference view (section 6.3), can simultaneously produce the results shown here (outperforming every
other baseline except for the provided fully supervised upper bound) with the sole removal of the Cross-View
Transformer component. In such case, the inference configuration is reduced to a Et −Gr module, as can be
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seen in Fig. 6.3.
This also confirms the enormous challenge that represents the transfer of semantic knowledge across wide

baseline camera locations, as both simple baselines and learned approaches that do not explicitly handle the
non-aligned nature of the data fail to provide useful solutions that can leverage the complementary information
provided by both cameras. Even though ZPCVNet outperforms such baselines, we are still far from the
upper bounds defined by the straight fully-supervised approaches within each view (IoU=33.43 for vr and
IoU=31.67 for vt ), suggesting that this is an interesting research problem to be pursued.

6.5 Conclusions
In this chapter we introduced and proposed an initial solution for the semi-supervised task of zero-pair,
cross-view semantic segmentation, in which a trained semantic segmentation system requires relocating its
fixed camera placement but keep producing predictions on either original or new viewpoint. The proposed
ZPCVNet method exploits the complementary information provided by the cross-view RGB image pairs and,
as a result, outperforms other reasonable baselines by a large margin over MVMO, without requiring any
labelling from the new viewpoint. This paves the way for further research in the direction of dense semantic
knowledge transfer across views that can narrow the current gap with the associated (in practice, infeasible)
fully supervised performance.
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Figure 6.7: Qualitative results for all methods in Experiment 1: (a) xk
t ,test : input view on target frame vt

(b) Ground truth view of the scene from the reference frame vr (not available at test time) (c) Ground truth
semantic segmentation on the reference of the reference view vr . This is the task ground truth for Experiment
1. (d) Outcome for method FSCV (Fully-Supervised Cross-View) (e) Outcome for method CVtest vr (f)
Outcome for method CVtest vt (g) Outcome for planar homography. See also Figs. 5.10 and 6.8 for detailed
steps and intermediate results of this method. (h) Outcome for Mix&Match Networks [270] (i) Outcome for
ZPCVNet (ours)
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Figure 6.8: Detailed steps for the planar homography-based baseline in experiments 1 and 2: (a) xk
t ,test : input

view on target frame vt (b) H z=0
t→r (xt ): output of the planar homography induced by the z = 0 plane mapping

target and reference views, applied to xk
t ,test (c) Ground truth view of the scene from the reference frame vr

(not available at test time) (d) Gr (Er (H z=0
t→r (xt ))): result of applying the semantic segmentation model trained

in a fully supervised way on the reference frame input and semantic ground truth pairs. This is the output of
the homography-based baseline for Experiment 1 (e) Ground truth for Experiment 1. The previous prediction
should resemble this. (f) [only for Experiment 2] H z=0

r→t (Gr (Er (H z=0
t→r (xt )))): result of applying the inverse

homography to the prediction for Experiment 1. (g) [only for Experiment 2] Ground truth for Experiment 2.
The previous prediction should resemble this.
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Figure 6.9: Qualitative results for all methdos in Experiment 2: (a) xk
t ,test : input view on target frame vt

(b) Ground truth view of the scene from the reference frame vr (not available at test time, shown here for
reference.) (c) Ground truth semantic segmentation on the reference of the target view vt . This is the task
ground truth for Experiment 2. (d) Outcome for method FSvt . This corresponds to a fully-supervised upper
bound, using pairs of images from rows (a), (c). (e) Outcome for method CVtest (f) Outcome for planar
homography. See also Figs. 5.10 and 6.8 for detailed steps and intermediate results of this method. (g)
Outcome for ZPCVNet (ours).
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7 Conclusions

This thesis comprises different approaches to handle several particular scenarios with the common context
of the scarcity —or even absence— of labeled data to be used for model learning. This problem, inherent
to many applied computer vision problems, has been overcome throughout the different chapters using a
variety of self and semi-supervised methods to handle mostly different image-to-image mapping problems,
where some edge —in the form of prior knowledge and/or synthetic data derived from it— could be exploited.
With these tools, we addressed the tasks of blur detection, hyperspectral reconstruction, temperature-spectral
emissivity separation and cross-view semantic segmentation. We hereby summarize the main contributions of
the thesis, and present potential directions for future work.

7.1 Summary of contributions
Chapter 1 discusses specific research objectives with respect to each of the identified challenges associated
with the aforementioned tasks. We now reproduce them and discuss the solutions proposed in the respective
chapters.

Objective 1— Self-supervised blur detection through synthetic blurring of scenes: propose
a self-supervised framework to bypass the need for large-scale blur localization datasets. Study
the combined effectiveness of unsupervised object proposals and synthetic modeling of blur
degradations to produce augmented training data.

In Chapter 2 we step aside the use of fully supervised end-to-end learning of image-to-image models for
blur localization from medium-sized datasets, which led to limited success in the past, and instead leverage a
set of physics-based models for defocus and motion blur generation to produce synthetically blurred images.
The use of a class-agnostic object proposals, together with halo artifact removal inpainting techniques, allows
us to create semantically plausible object masks that enable the generation of an online stream of augmented
images with partial blurs and associated masks. This leads to the construction of a framework that can be
employed in purely self-supervised, weakly supervised or semi-supervised configurations. We show that our
framework improves state-of-the-art results for two distinct test datasets even without ever observing any real
blurred image, and that the addition of a small number of annotated images consistently outperforms the fully
supervised approach to the problem.

Objective 2— Spatio-spectral feature fusion for hyperspectral reconstruction: current
approaches for RGB to hyperspectral image recovery disregard the potentially useful information
provided by nearby pixels. Hence, we propose the use of a Deep Convolutional Generative
Adversarial Network to exploit the spatio-textural information from the local neighborhood while
producing plausible reconstructions.

In Chapter 3 we address the significantly underconstrained problem of the color to hyperspectral image
reconstruction. We show how traditional techniques used to exploit diverse statistical properties of the spectral
signal in an attempt to construct informative priors for real surface reflectances in order to be able to build
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such mappings. We note, however, how most of them treat each sample independently, thus ignoring the
information from their local vicinity when trying to obtain high spectral resolution versions of the input.
Interestingly, no CNN-based method had ever been tried for this task. Therefore, we formulate the task as an
image to image mapping learning problem, and solve it using a conditional generative adversarial framework
in an attempt to capture spatial semantics and yield plausible and consistent reconstructions. The absence of
simultaneously captured RGB-HSI pairs is circumvented through the colorimetrically rigorous, synthetic
generation of RGB versions of real HSI images. Quantitative evaluation shows a Root Mean Squared Error
(RMSE) drop of 44.7% and a Relative RMSE drop of 47.0% on the ICVL natural hyperspectral image dataset,
therefore setting a new state of the art for the task.

Objective 3— Robust multi-spectrometer hardware system for remote spectral radiance
acquisition: there is a lack of adequate rugged commercial hardware able to obtain wide range
remote spectral radiance raw data from hot remote sources. Thus, we tackle the design and
development of our own capture device, which is required to provide fast, reliable and calibrated
wide range radiance readings over a reduced size spot from a safe distance from the EAF.

Objective 4— Self-supervised model for simultaneous temperature and spectral emissivity
estimation: we aim at defining and validating a method that can leverage a well-established
radiative transfer model within a blind inverse problem modeling framework without extensive
available ground truth, so that we are able to estimate both sample temperature and spectral
emissivity over captures obtained with the described hardware.

The two preceding objectives are tackled in Chapter 4. There, we contextualize the addressed problem
of temperature and spectral emissivity separation for hot samples in the broader context of the quest for the
—to date still unattainable— full online remote monitoring of the steel production process parameters in
EAF-based steelmaking plants. Estimating the temperature of emissive samples (e.g. liquid slag) in such
harsh industrial environments is indeed a crucial yet challenging task, which is typically addressed by means
of methods that require physical contact. Current remote methods require information on the emissivity
of the sample. However, the spectral emissivity is dependent on the sample composition and temperature
itself, and it is hardly measurable unless under controlled laboratory procedures. In Chapter 4, we present a
portable device and associated probabilistic model that can simultaneously produce quasi real-time estimates
for temperature and spectral emissivity of hot samples in the [0.2, 12.0µm] range at distances of up to 20m.
The model is robust against variable atmospheric conditions, and the device is presented together with a quick
calibration procedure that allows for in field deployment in rough industrial environments, thus enabling in
line measurements. We validate the temperature and emissivity estimates of our device against laboratory
equipment under controlled conditions in the [550, 850◦C ] temperature range for two solid samples with well
characterized spectral emissivities: alumina (α−−− Al2O3) and hexagonal boron nitride (h −−−B N ). The analysis
of the results yields Root Mean Squared Errors of 32.3◦C and 5.7◦C respectively, and well correlated spectral
emissivities. This development led to a European patent application [196] being filed by ArcelorMittal, our
client and end user of the resulting asset.

Objective 5— Multi-view, multi-object dataset for semantic segmentation: create a new syn-
thetic path-tracing based dataset, comprising scenes with multiple, varied objects per-scene and
multiple, wide-baseline views where each of them is annotated in terms of semantic segmentation.
Release the code and dataset to the community for public access.

In chapter 5, we introduce MVMO (Multi-View Multi-Object dataset), a large scale multi-view photoreal-
istic synthetic dataset with multi-class semantic segmentation annotations that, unlike existing alternatives,
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features wide baselines between many camera pairs, a high object density and a large amount of occlusions.
MVMO is a synthetic, path tracing-based set of 116,000 scenes, observed from 25 equally distributed camera
poses, with fine-detailed per-view semantic segmentation annotations of 10 object categories. Given its
challenging setting, evidenced by the provided experimental baseline results, we expect that MVMO will drive
further research in the largely overlooked fields of cross and multi-view semantic parsing as approaches that
are called to overcome the fundamental limitations of monocular semantic segmentation setups. Moreover,
the fact that both the images and the code have been publicly released* enables the extension to further dense
prediction tasks as well (e.g. cross-view depth prediction, novel view synthesis).

Objective 6— Semi-supervised cross-view semantic segmentation: define and validate a
data-efficient approach for semantic transfer of dense predictions across wide-baseline views
upon the event of a forced camera-relocation.

Finally, in chapter 6 we take advantage of the MVMO dataset to handle one particular data-efficient
instantiation of the cross-view semantic knowledge transfer problem: the relocation of the camera in a working
monocular semantic segmentation system will certainly cause a substantial degradation of the predictive
performance. Therefore, we introduce the novel task of zero-pair cross-view semantic segmentation, in which
we are allowed to obtain an additional set of unlabeled but synchronized image pairs of new scenes from both
original and new camera poses. Under such assumption, we present ZPCVNet, a CNN model composed of a
set of encoders and decoders that are trained jointly with the available data so that they share common latent
representations of the scenes. Such alignment enables the combination of encoder and decoders of arbitrary
viewpoints at inference time so as to yield segmentation results from the desired reference. The envisioned
model comprises a cross-view transformation module as well, which facilitates the cross-view alignment.
Our experiments over the MVMO dataset evidence the failure of classic geometry-based baselines for this
task, and show that ZPCVNet outperforms these and other learning-based baselines.

Software packages: as mentioned through the respective chapters, the code supporting part of our work has
been made available, and can be found in our Summary of published code.

7.2 Future research directions
Self-supervised learning of visual representations has rapidly evolved since the early works, i.e. those
which leveraged pretraining over handcrafted pretext tasks of little practical value [79, 137, 179] —for which
automatic labels could be generated— in an attempt to learn semantically rich features that could be transferred
for subsequent downstream image understanding tasks. The second —ongoing— wave of self-supervised
representation learning works relies on varied forms of contrastive [39, 181, 253], clustering-based [28–30] or
teacher-student learning (i.e. feature reconstruction) based [30, 41, 78, 89] approaches, often tightly coupled
with the application of strong augmentation techniques to generate distinct versions (views) of one image.
These have recently achieved significant landmarks, surpassing even the performance of the fully-supervised
pretraining for various tasks [29, 40, 89], and thus posing themselves as potential candidates to become the
dominant paradigm for neural net pretraining.

However, an overwhelming majority of these works are biased, either by design or indirectly through
the use of Imagenet-1000-like [229] datasets, towards domains where there exists one single predominant
object in the —unlabeled— images used for training. Furthermore, they cannot be directly applied (e.g.
through k-NN assignment) to pixel-dense prediction tasks, unless complemented with freshly initialized

*The MVMO dataset and code are available at https://aitorshuffle.github.io/projects/mvmo/
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decoders that must be trained on densely labeled data. Even in that case, they are likely to produce mediocre
results due to the aforementioned bias. Consequently, there is a large void to be filled by expanding the
current emergence of self-supervised learning methods to dense, image-to-image mapping problems, as only
object-detection oriented extensions have been attempted so far [104, 280]. This is of particular interest for
the fields of cross-view and multi-view semantic segmentation, as they provide a natural notion of "views" of
a 3D scene in the geometric interpretation of the term that could be potentially exploited by contrastive or
feature-reconstruction methods.

With regard to our particular proposed setting from Chapter 6, we envision two additional potentially
fruitful research directions: one would be advancing in the inclusion of explicit physics-inspired inductive
biases from the field of classic multi-view geometry (particularly so as some form of the epipolar constraint) in
order to obtain a significant restriction of the solution search space [95]. The other is the inclusion of attention
in the framework as a mechanism capable of providing scene-dependent inference-time matches between
features across views in substitution of the current Cross-View Transformer module. The latter lies in perfect
alignment with the recent rise of attention-based transformers [262] in computer vision [59] (paradoxically,
advancing towards inductive bias-free architectures) and their excellent behavior in conjunction with self-
supervised learning objectives [30], even showing the emergence of dense features for multiple objects in the
image.

Actually, the first works employing these ingredients are already being issued [232]. These evidence
the shrinkage of the gap of multi-view semantic segmentation with other related fields as well, especially
so with that of novel view synthesis. Along these lines, the explosion of new forms of implicit 3D scene
representations and neural radiance fields [166] hints at a more than probable cross-fertilization between both
predictive tasks.

The stated ubiquitous presence of transformers (and self-attention as the most fundamental building
block) supports the extended belief in the community that they are called to represent the prevailing paradigm
as for architecture design choices across a variety of tasks and settings. In fact, recent trends in both blur
detection [113] and hyperspectral reconstruction [193] problems point towards such direction, together with
their evaluation under more severe, real-world conditions [8].

Crucial to the development of the aforesaid strategies for cross and multi-view scene understanding is the
availability of adequate synthetic, labeled datasets —such as MVMO— that can stand in for the absent real
ones. Our future plans comprise the release of the code necessary to extend current semantic segmentation
annotations in MVMO to additional tasks and modalities (e.g. instance/panoptic segmentation, dense depth),
in order to facilitate the development of multimodal approaches and undertaking new, rapidly spreading
complex computer vision tasks, such as multi-view amodal segmentation [146], cross-view and cross-modal
translations, or object-centric learning [154] related ones, among others. The very recent explosion of new
multi-view, multi-object synthetic datasets [256] and dataset generators [88] reveal the growing interest of the
aforesaid research lines.

Moving on to our approach for temperature and spectral emissivity separation in Chapter 4, it is apparent
that there is a long way forward until the desired full monitoring of online process parameters is achieved in
EAF plants. Accurate remote and online multi-variate regression of slag components’ concentration would be
a major step towards such final goal, one which would first require yielding even more accurate predictions on
temperature and emissivity values than those obtained from the presented system. In particular, the choice of
discrete, fuzzy membership function-based representation of the spectral emissivity in our radiative transfer
model is one key element that calls for a modeling alternative providing better spectral resolution while
keeping the number of parameters low. To that respect, the integration of Gaussian processes [207] into the
workflow as a continuous representation mechanism for the spectral emissivity is one remarkably promising
direction of future research to be pursued from the modeling perspective.
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On the other hand, from the experimental point of view, the validation of such improved model not only
on hot solid, but also on molten samples would constitute a significant milestone. However, there currently
exists hardly any laboratory-grade equipment able to perform such emissivity measurements for molten
samples under controlled atmospheric and sample conditions for the obtention of a reliable ground truth. A
wider availability of such rare piece of laboratory equipment would definitely represent a major highlight
and would contribute to significant breakthroughs in the field. Finally, an orthogonal yet exciting research
direction would be that of extending the domain of application of the device and, especially, the method
(which is agnostic to the particular spectrometer being used) to other fields out of steelmaking. Vulcanology,
for instance, has recently gained massive public attention due to the 2021 eruptions of Fagradalsfjall (Iceland)
and Cumbre Vieja (Spain) [267]. The extensive monitorization of the expelled hot magma through a variety
of techniques (e.g. IR cameras, remote FTIR spectrometers, physical samples analyzed in laboratory, etc.) in
such events represents a unique opportunity to validate the proposed model out of the context it was initially
intended for and to contribute to additional scientific research fields.
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1. A. Alvarez-Gila, A. Galdran, E. Garrote, and J. van de Weijer, “Self-supervised blur detection from
synthetically blurred scenes,” Image and Vision Computing, 92:103804, December 2019

2. A. Alvarez-Gila, J. van de Weijer, and E. Garrote, “Adversarial Networks for Spatial Context-Aware
Spectral Image Reconstruction from RGB,” in IEEE International Conference on Computer Vision
Workshops (ICCVW), 2017.

3. B. Arad, O. Ben-Shahar, R. Timofte, L. Van Gool, L. Zhang, M.-H. Yang, Z. Xiong, C. Chen, Z. Shi, D.
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Ganapathysubramanian, and S. Sarkar, “NTIRE 2018 Challenge on Spectral Reconstruction from RGB
Images,” IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),
2018.

4. A. Picon⋆, A. Alvarez-Gila⋆, J. A. Arteche, G. A. López, and A. Vicente, “A Probabilistic Model and
Capturing Device for Remote Simultaneous Estimation of Spectral Emissivity and Temperature of Hot
Emissive Materials,” IEEE Access, 9:100513–100529, 2021. ⋆ Equal contribution.
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Wide Baseline Multi-View Semantic Segmentation,” arXiv:2205.15452 [cs], May 2022.
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Summary of published code

1. SynthBlur, pretrained models resulting from the experimental section of Chapter 2, presented in
“Self-supervised blur detection from synthetically blurred scenes", Image and Vision Computing, 2019:
https://github.com/aitorshuffle/synthblur

2. MVMO, code and dataset presented in Chapter 5 and in [5]: https://aitorshuffle.github.io/projects/mvmo/

111

https://github.com/aitorshuffle/synthblur
https://aitorshuffle.github.io/projects/mvmo/




Bibliography

[1] Alessandro Achille and Stefano Soatto. Emergence of invariance and disentanglement in deep
representations. Journal of Machine Learning Research, 19(1):1947–1980, 2018.

[2] Farnaz Agahian, Seyed Ali Amirshahi, and Seyed Hossein Amirshahi. Reconstruction of reflectance
spectra using weighted principal component analysis. Color Research & Application, 33(5):360–371,
October 2008.

[3] Aitor Alvarez-Gila, Adrian Galdran, Estibaliz Garrote, and Joost van de Weijer. Self-supervised blur
detection from synthetically blurred scenes. Image and Vision Computing, 92:103804, December 2019.

[4] Aitor Alvarez-Gila, Joost van de Weijer, and Estibaliz Garrote. Adversarial Networks for Spatial
Context-Aware Spectral Image Reconstruction from RGB. In IEEE International Conference on
Computer Vision Workshops (ICCVW), 2017.

[5] Aitor Alvarez-Gila, Joost van de Weijer, Yaxing Wang, and Estibaliz Garrote. MVMO: A Multi-Object
Dataset for Wide Baseline Multi-View Semantic Segmentation. arXiv:2205.15452 [cs], May 2022.

[6] Boaz Arad and Ohad Ben-Shahar. Sparse Recovery of Hyperspectral Signal from Natural RGB Images.
In European Conference on Computer Vision (ECCV), 2016.

[7] Boaz Arad, Ohad Ben-Shahar, Radu Timofte, Luc Van Gool, Lei Zhang, Ming-Hsuan Yang, Zhiwei
Xiong, Chang Chen, Zhan Shi, Dong Liu, Feng Wu, Charis Lanaras, Silvano Galliani, Konrad
Schindler, Tarek Stiebel, Simon Koppers, Philipp Seltsam, Ruofan Zhou, Majed El Helou, Fayez
Lahoud, Marjan Shahpaski, Ke Zheng, Lianru Gao, Bing Zhang, Ximin Cui, Haoyang Yu, Yigit Baran
Can, Aitor Alvarez-Gila, Joost van de Weijer, Estibaliz Garrote, Adrian Galdran, Manoj Sharma,
Sriharsha Koundinya, Avinash Upadhyay, Raunak Manekar, Rudrabha Mukhopadhyay, Himanshu
Sharma, Santanu Chaudhury, Koushik Nagasubramanian, Sambuddha Ghosal, Asheesh K. Singh,
Arti Singh, Baskar Ganapathysubramanian, and Soumik Sarkar. NTIRE 2018 challenge on spectral
reconstruction from RGB images. In IEEE Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), 2018.

[8] Boaz Arad, Radu Timofte, Ohad Ben-Shahar, Yi-Tun Lin, and Graham D. Finlayson. NTIRE 2020
Challenge on Spectral Reconstruction From an RGB Image. In IEEE Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW), 2020.

[9] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein Generative Adversarial Networks.
In International Conference on Machine Learning (ICML), 2017.

[10] Worldsteel Association et al. http://www.worldsteel.org. accessed on, 19, 2020.

[11] Fernando Ayala, José F. Echávarri, Pilar Renet, and Angel I. Negueruela. Use of three tristimulus
values from surface reflectance spectra to calculate the principal components for reconstructing these

113



Bibliography

spectra by using only three eigenvectors. Journal of the Optical Society of America A, 23(8):2020–2026,
August 2006.

[12] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. SegNet: A Deep Convolutional Encoder-
Decoder Architecture for Scene Segmentation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 39(12):2481 – 2495, 2017.

[13] Soonmin Bae and Frédo Durand. Defocus Magnification. Computer Graphics Forum, 26(3):571–579,
September 2007.

[14] Aayush Bansal, Xinlei Chen, Bryan Russell, Abhinav Gupta, and Deva Ramanan. PixelNet: Represen-
tation of the pixels, by the pixels, and for the pixels. arXiv:1702.06506 [cs], February 2017.

[15] Alessandro Barducci, Donatella Guzzi, Cinzia Lastri, Paolo Marcoionni, Vanni Nardino, and Ivan
Pippi. Emissivity and Temperature Assessment Using a Maximum Entropy Estimator: Structure and
Performance of the MaxEnTES Algorithm. IEEE Transactions on Geoscience and Remote Sensing,
53(2):738–751, February 2015.

[16] Alessandro Barducci, Donatella Guzzi, Cinzia Lastri, Vanni Nardino, Ivan Pippi, and Valentina
Raimondi. Emissivity spectra estimated with the MaxEnTES algorithm. In SPIE Sensors, Systems,
and Next-Generation Satellites, 2014.

[17] Dhruv Batra, Adarsh Kowdle, Devi Parikh, Jiebo Luo, and Tsuhan Chen. iCoseg: Interactive co-
segmentation with intelligent scribble guidance. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2010.

[18] Yoshua Bengio, Yann Lecun, and Geoffrey Hinton. Deep learning for AI. Communications of the
ACM, 64(7):58–65, June 2021.

[19] Candace Berrett, Gustavious Paul Williams, Todd Moon, and Jacob Gunther. A Bayesian Nonparamet-
ric Model for Temperature-Emissivity Separation of Long-Wave Hyperspectral Images. Technometrics,
56(2):200–211, April 2014.
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