
CVC, Bellaterra

2022-07-19

PhD thesis dissertation by Aitor Álvarez Gila

Directors:

Joost van de Weijer

Estibaliz Garrote

Self-supervised learning 

for image-to-image translation

in the small data regime



2

1

Self-supervised learning for image-to-image translation in the small data regime

Introduction

2

3

4

5

6

7

Self-Supervised Blur Detection 
from Synthetically Blurred Scenes

Adversarial Networks for Spatial Context-Aware 
Spectral Image Reconstruction from RGB

A Probabilistic Model and Capturing Device for Remote Simultaneous
Estimation of Spectral Emissivity and Temperature of Hot Emissive Materials

MVMO: A Multi-Object Dataset for
Wide Baseline Multi-View Semantic Segmentation

Zero-Pair Semi-Supervised 
Cross-View Semantic Segmentation

Conclusions

SynthBlur

RGB2HSI

TES

MVMO

ZPCVNet



3

1

Self-supervised learning for image-to-image translation in the small data regime

Introduction

2

3

4

5

6

7

Self-Supervised Blur Detection 
from Synthetically Blurred Scenes

Adversarial Networks for Spatial Context-Aware 
Spectral Image Reconstruction from RGB

A Probabilistic Model and Capturing Device for Remote Simultaneous
Estimation of Spectral Emissivity and Temperature of Hot Emissive Materials

MVMO: A Multi-Object Dataset for
Wide Baseline Multi-View Semantic Segmentation

Zero-Pair Semi-Supervised 
Cross-View Semantic Segmentation

Conclusions

SynthBlur

RGB2HSI

TES

MVMO

ZPCVNet



4

Introduction

Overcome the fully supervised, end-to-end paradigm on large-scale annotated datasets

Leverage our prior knowledge of image formation process

Small labeled data domain

Ch.2 (SynthBlur)

Ch.3 (RGB2HSI)

Ch.4 (TES)

Ch.5 (MVMO), Ch.6 (ZPCVNet)
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Problem statement

Image blur detection for…

Image: phlearn.com

Defocus blur: 

Wide aperture projecting scene points on a circle of confusion

Motion blur:

Object/camera movement during exposure

Fully sup progress hindered by
lack of large scale datasets → Ch.2 (SynthBlur)
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Overview
One framework, 3 instantiations
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Blur mask extraction

* Invert blur mask with prob 𝑝 to avoid foreground bias.
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Synthetic blurring

Defocus Motion

𝐾 – randomized blur kernel:

• Defocus: Gaussian 𝐾𝜎

• Motion: non-linear motion blur kernel : elastic deformation over rotated line
length

rotation angle Elastic deformation
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Synthetic blurring
Halo artifact removal through inpainting

Prevents the model from learning shortcuts for blur detection.

[Telea2004] A. Telea, “An Image Inpainting Technique Based on the Fast Marching Method,” Journal of Graphics Tools, 2004.
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Experiments
Evaluation on [Shi2014]’s 500 even images

Segmentation CNN: Deeplabv3[Resnet101]

• Large receptive fields (atrous convolutions)

• Multi-scale feature fusion

[Shi2014] J. Shi et al., “Discriminative Blur Detection Features,” CVPR 2014.

(fully supervised ad hoc CNN)
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Experiments
Evaluation on [Shi2014]’s 500 even images

Segmentation CNN: Deeplabv3[Resnet101]

• Large receptive fields (atrous convolutions)

• Multi-scale feature fusion

[Shi2014] J. Shi et al., “Discriminative Blur Detection Features,” CVPR 2014.

(fully supervised ad hoc CNN)

• Our methods beat non-deep and fully supervised deep ad-hoc CNNs (especially motion blur)

• It’s not the architecture

• Self and weak supervision ~on pair
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Experiments
Evaluation on [Shi2014]’s 500 even images

[Shi2014] J. Shi et al., “Discriminative Blur Detection Features,” CVPR 2014.
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Experiments
Evaluation on [Shi2014]’s 500 even images

[Shi2014] J. Shi et al., “Discriminative Blur Detection Features,” CVPR 2014.
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Experiments
Evaluation on [Shi2014]’s 500 even images

[Shi2014] J. Shi et al., “Discriminative Blur Detection Features,” CVPR 2014.
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Experiments
Evaluation on [Shi2014]’s 500 even images. Semi-supervised setup (joint training)
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Experiments
Evaluation on [Shi2014]’s 500 even images. Semi-supervised setup (joint training)

Do not depend on
real blur masks.

Useful with few
blurred images
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Experiments
Evaluation on [Shi2014]’s 500 even images. Semi-supervised setup (joint training)

Do not depend on
real blur masks.

Useful with few
blurred images

Joint > fully supervised

(Especially with few images)
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Experiments

Cross-dataset generalization

[Shi2014]→[Zhao2018] direct transfer.

[Zhao2018] W. Zhao, “Defocus Blur Detection via Multi-Stream Bottom-Top-Bottom Fully Convolutional Network,” CVPR 2018.

Defocus blur-only dataset

Robust generalization
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Takeaways

• Framework for defocus and motion blur segmentation from procedural synthetic local (semantically
coherent) blurring. Instantiations:

• Self-supervised

• Weakly-supervised

• Semi-supervised

• Good generalization

• Useful for few-data domains , e.g. medical, text, multi-spectral

Publication A. Alvarez-Gila, A. Galdran, E. Garrote, and J. van de Weijer, “Self-supervised blur detection from synthetically blurred scenes,”
Image and Vision Computing, 2019.

https://github.com/aitorshuffle/synthblur

No need for blur segmentation labels

https://github.com/aitorshuffle/synthblur
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The task
Spectral Image Reconstruction from RGB

Learn a image-to-image mapping s.t., for each pixel:

In particular: 

Heavily underconstrained (e.g. metamers), non-linear problem

Ch.3 (RGB2HSI)
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Image formation

Images: R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed., Pearson, 2007.

M. S. Brown, “Understanding the In-Camera Image Processing Pipeline for Computer Vision,” CVPR - Tutorial, 2016.
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Image formation

Images: R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed., Pearson, 2007.

M. S. Brown, “Understanding the In-Camera Image Processing Pipeline for Computer Vision,” CVPR - Tutorial, 2016.
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Image formation

Images: R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed., Pearson, 2007.

M. S. Brown, “Understanding the In-Camera Image Processing Pipeline for Computer Vision,” CVPR - Tutorial, 2016.
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Image formation

Images: R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed., Pearson, 2007.

M. S. Brown, “Understanding the In-Camera Image Processing Pipeline for Computer Vision,” CVPR - Tutorial, 2016.
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Image formation

Images: R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed., Pearson, 2007.

M. S. Brown, “Understanding the In-Camera Image Processing Pipeline for Computer Vision,” CVPR - Tutorial, 2016.

Spectral

Sensitivity

Curves

Color Filter Array

RGB
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Image formation

Images: R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed., Pearson, 2007.

M. S. Brown, “Understanding the In-Camera Image Processing Pipeline for Computer Vision,” CVPR - Tutorial, 2016.

Spectral

Sensitivity

Curves

Color Filter Array

Hyperspectral
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Related work
Spectral reconstruction

• From RGB + extra help

• Low-res HS image:

• Multiplexed light:

• No spatial info considered:

• Leveraging spatial context:

[Cao2011] X. Cao et al., “High resolution multispectral video capture with a hybrid

camera system,” CVPR 2011

[Park2007] J. I. Park et al., “Multispectral Imaging Using Multiplexed Illumination,”

ICCV 2007

[Parmar2008] M. Parmar et al., “Spatio-spectral reconstruction of the multispectral

datacube using sparse recovery,” ICIP 2008

[Goel2015] M. Goel et al., “HyperCam: Hyperspectral Imaging for Ubiquitous Computing

Applications,” IJCPUC 2015

[Nguyen2014] R. M. H. Nguyen et al., “Training-Based Spectral Reconstruction from a 

Single RGB Image,” ECCV 2014

[Arad2016] B. Arad et al., “Sparse Recovery of Hyperspectral Signal from Natural RGB 

Images,” ECCV 2016

[Robles-

Kelly2015]

A. Robles-Kelly, “Single Image Spectral Reconstruction for Multimedia 

Applications,” ACM Multimedia, 2015.

[Galliani2017] S. Galliani et al., “Learned Spectral Super-Resolution,” arXiv:1703.09470 

[cs], 2017.
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The ICVL dataset
[Arad2016]

~200 images

Camera: Specim PS Kappa DX4 + rotary

Raw HSI: 1392×1300 pixels, 519 spectral bands [400-1,000nm] with ∆𝜆 ≅ 1,25𝑛𝑚

Downsampled: 31 spectral channels [400nm-700nm] with ∆𝜆 ≅ 10𝑛𝑚

[Arad2016] B. Arad et al., “Sparse Recovery of Hyperspectral Signal from Natural RGB Images,” ECCV 2016

.
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Dataset preparation

From HyperSpectral to sRGB

-min

/max
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Approach

3 Adversarial Networks for Spatial Context-Aware 
Spectral Image Reconstruction from RGB

RGB2HSI
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Generative adversarial Networks (GANs)
[Goodfellow2014]

[Goodfellow2014] I. Goodfellow et al., “Generative Adversarial Nets,” NIPS 2014

Sample images: D. Berthelot, “BEGAN: Boundary Equilibrium Generative Adversarial Networks,” 2017.

https://www.youtube.com/watch?v=J0o6LhaUSsc&vl=en

https://www.youtube.com/watch?v=J0o6LhaUSsc&vl=en
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Generative adversarial Networks (GANs)
[Goodfellow2014]

[Goodfellow2014] I. Goodfellow et al., “Generative Adversarial Nets,” NIPS 2014

Sample images: D. Berthelot, “BEGAN: Boundary Equilibrium Generative Adversarial Networks,” 2017.

https://www.youtube.com/watch?v=J0o6LhaUSsc&vl=en

https://www.youtube.com/watch?v=J0o6LhaUSsc&vl=en
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Conditional GANs: pix2pix
[Isola 2017]

[Isola2017] P. Isola et al., “Image-To-Image Translation With Conditional Adversarial Networks,” CVPR 2017.

[Hesse2017] C. Hesse, “Image-to-Image Demo - Affine Layer,” 2017, https://affinelayer.com/pixsrv/.
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Conditional GANs: pix2pix
[Isola 2017]

[Isola2017] P. Isola et al., “Image-To-Image Translation With Conditional Adversarial Networks,” CVPR 2017.

[Hesse2017] C. Hesse, “Image-to-Image Demo - Affine Layer,” 2017, https://affinelayer.com/pixsrv/.
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Conditional GANs: pix2pix
[Isola 2017]

[Isola2017] P. Isola et al., “Image-To-Image Translation With Conditional Adversarial Networks,” CVPR 2017.

[Hesse2017] C. Hesse, “Image-to-Image Demo - Affine Layer,” 2017, https://affinelayer.com/pixsrv/.
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Conditional GANs: pix2pix
[Isola 2017]

[Isola2017] P. Isola et al., “Image-To-Image Translation With Conditional Adversarial Networks,” CVPR 2017.

[Hesse2017] C. Hesse, “Image-to-Image Demo - Affine Layer,” 2017, https://affinelayer.com/pixsrv/.
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Adversarial spectral reconstruction networks
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Architecture
G is a U-Net [Ronneberger2015]

[Ronneberger2015] O. Ronneberger et al., “U-Net: Convolutional Networks for Biomedical Image Segmentation,” MICCAI 2015

3x256x256

64x128x128

128x64x64

256x32x32

512x16x16

512x8x8

512x4x4

512x2x2

512x1x1

1024x2x2

1024x4x4

1024x8x8

1024x16x16

768x32x32

384x64x64

192x128x128

Conv2D(k=3,s=2) + BatchNorm + LeakyReLU

Conv2DTranspose(k=2,s=1) + Dropout(r=0.1) + Merge(      ) + LeakyReLU

Conv2D(k=1,s=1) + LeakyReLU
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Architecture
G is a U-Net [Ronneberger2015]

[Ronneberger2015] O. Ronneberger et al., “U-Net: Convolutional Networks for Biomedical Image Segmentation,” MICCAI 2015

3x256x256
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512x16x16

512x8x8

512x4x4

512x2x2

512x1x1
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1024x4x4
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1024x16x16

768x32x32
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Architecture
D is a Patch-CNN

Conv2D(k=3,s=2) + LeakyReLU

64x64x64

128x32x32

256x16x16

32x128x128

1x8x8

Focuses on high (spatial) freqs.
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Experiments
Evaluation on ICVL

Per pixel, across 

the spectrum Normalized by radiance

Accounts for low 

luminance samples

Goodness of fit 

coefficient

(high is better)

Perceptual color 

difference
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-33.2% -54,0%

Per pixel, across 

the spectrum Normalized by radiance

Accounts for low 

luminance samples

Goodness of fit 

coefficient

(high is better)

Perceptual color 

difference

Pixelwise 

reconstruction
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Results

Original (sRGB render) Reconstructed (sRGB render) Original --- Reconstructed
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3 Adversarial Networks for Spatial Context-Aware 
Spectral Image Reconstruction from RGB

RGB2HSI
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Results
Does spatial information really help?

Full G net

3x256x256

64x128x128

128x64x64

256x32x32

512x16x16

512x8x8

512x4x4

512x2x2

512x1x1

1024x2x2

1024x4x4

1024x8x8

1024x16x16

768x32x32

384x64x64

192x128x128
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Results
Does spatial information really help?

G pruned to 1 branch. Receptive field: 1x1

3x256x256
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Results
Does spatial information really help?

G pruned to 2 branches. Receptive field: 3x3

3x256x256

64x128x128

384x64x64

192x128x128
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Results
Does spatial information really help?

G pruned to 3 branches. Receptive field: 7x7

3x256x256

64x128x128

128x64x64

384x64x64

192x128x128
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Results
Does spatial information really help?

G pruned to 4 branches. Receptive field: 15x15

3x256x256

64x128x128

128x64x64

256x32x32
768x32x32

384x64x64

192x128x128
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Results
Does spatial information really help?

G pruned to 5 branches. Receptive field: 31x31

3x256x256

64x128x128

128x64x64

256x32x32

512x16x16

1024x16x16

768x32x32

384x64x64

192x128x128
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Results
Does spatial information really help?

G pruned to 6 branches. Receptive field: 63x63

3x256x256

64x128x128

128x64x64

256x32x32

512x16x16

512x8x8
1024x8x8

1024x16x16

768x32x32

384x64x64

192x128x128
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Results
Does spatial information really help?

G pruned to 7 branches. Receptive field: 127x127

3x256x256

64x128x128

128x64x64

256x32x32

512x16x16

512x8x8

512x4x4 1024x4x4

1024x8x8

1024x16x16

768x32x32

384x64x64

192x128x128
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Results
Does spatial information really help?

G pruned to 8 branches. Receptive field: 255x255

3x256x256

64x128x128

128x64x64

256x32x32

512x16x16

512x8x8

512x4x4

512x2x2 1024x2x2

1024x4x4

1024x8x8

1024x16x16

768x32x32

384x64x64

192x128x128



77

3
-R

G
B

2
H

S
I

Results
Does spatial information really help?

G is a U-Net Full. Receptive field: 256x256

3x256x256

64x128x128

128x64x64

256x32x32

512x16x16

512x8x8

512x4x4

512x2x2

512x1x1

1024x2x2

1024x4x4

1024x8x8

1024x16x16

768x32x32

384x64x64

192x128x128
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Takeaways

• CNNs/GANs applied to spectral image reconstruction for the 1st time

• State of the art over ICVL dataset

• Spatial context information does help*

Publication A. Alvarez-Gila, J. van de Weijer, and E. Garrote, “Adversarial Networks for Spatial Context-Aware Spectral Image
Reconstruction from RGB,” ICCVW 2017

Publication B. Arad, O. Ben-Shahar, R. Timofte, L. Van Gool, L. Zhang, M.-H. Yang, Z. Xiong, C. Chen, Z. Shi, D. Liu, F. Wu, C. Lanaras, S.
Galliani, K. Schindler, T. Stiebel, S. Koppers, P. Seltsam, R. Zhou, M. El Helou, F. Lahoud, M. Shahpaski, K. Zheng, L. Gao, B. Zhang,
X. Cui, H. Yu, Y. B. Can, A. Alvarez-Gila, J. van de Weijer, E. Garrote, A. Galdran, M. Sharma, S. Koundinya, A. Upadhyay, R.
Manekar, R. Mukhopadhyay, H. Sharma, S. Chaudhury, K. Nagasubramanian, S. Ghosal, A. K. Singh, A. Singh, B.
Ganapathysubramanian, and S. Sarkar, “NTIRE 2018 Challenge on Spectral Reconstruction from RGB Images,” CVPRW 2018

https://github.com/aitorshuffle/ntire2018_adv_rgb2hs

https://github.com/aitorshuffle/ntire2018_adv_rgb2hs
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1

Self-supervised learning for image-to-image translation in the small data regime

Introduction

2

3

4

5

6

7

Self-Supervised Blur Detection 
from Synthetically Blurred Scenes

Adversarial Networks for Spatial Context-Aware 
Spectral Image Reconstruction from RGB

A Probabilistic Model and Capturing Device for Remote Simultaneous
Estimation of Spectral Emissivity and Temperature of Hot Emissive Materials

MVMO: A Multi-Object Dataset for
Wide Baseline Multi-View Semantic Segmentation

Zero-Pair Semi-Supervised 
Cross-View Semantic Segmentation

Conclusions

SynthBlur

RGB2HSI

TES

MVMO

ZPCVNet
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Context
Steelmaking with an Electric Arc Furnace

FluidMediaStudios, “Electric Arc Furnace Operations,” 2019. https://www.youtube.com/watch?v=HKQ2GaXFI3w
.

https://www.youtube.com/watch?v=HKQ2GaXFI3w
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Context
Steelmaking with an Electric Arc Furnace

• Holy Grail of EAF-based steelmaking: 

Remote, online estimation of slag composition

e.g. 

• State of the affairs:

• Manual temperature mesasurement through thermocouple

• Offline chemical analysis of cooled (solid) preprocessed slag sample (XRF spectrometry)

SiO2 (%) FeO (%) Al2O3 (%) CaO (%) MgO (%)

25.24 0.23 6.15 60.02 3.49
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• Holy Grail of EAF-based steelmaking: 

Remote, online estimation of slag composition

temperature and spectral emissivity

i.e. Temperature-Emissivity Separation (TES)

Problem statement
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• Holy Grail of EAF-based steelmaking: 

Remote, online estimation of slag composition

temperature and spectral emissivity

i.e. Temperature-Emissivity Separation (TES)

Problem statement

Useful process variable
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• Holy Grail of EAF-based steelmaking: 

Remote, online estimation of slag composition

temperature and spectral emissivity

i.e. Temperature-Emissivity Separation (TES)

Problem statement

Useful process variable Proxy for composition
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• Holy Grail of EAF-based steelmaking: 

Remote, online estimation of slag composition

temperature and spectral emissivity

i.e. Temperature-Emissivity Separation (TES)

Problem statement

Useful process variable Proxy for composition

• Heavily underconstrained problem

• Previous methods pose strong assumptions:

• Uniform spectral emissivity [Rego-Barcena2008]

• Known temperature [Lee2013]

• Specific temperature/emissivity ranges (e.g. remote sensing) [Barducci2014]

Ch.4 (TES)



89

4
-T

E
S

Prototype: Acquisition case Opto-mecanical system Tripod mount

Design of the device
System description

Target spot

Collimator

Notch

filter

UV-VIS

VIS-NIR

VIS-NIR

PIR

Fiber bundle

[200-12000nm]

Ø8 cm
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Target spot
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Notch

filter

UV-VIS
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Prototype: Acquisition case Opto-mecanical system Tripod mount

Design of the device
System description

Target spot

Collimator

Notch

filter

UV-VIS

VIS-NIR

VIS-NIR

PIR

Fiber bundle

[200-12000nm]

Ø8 cm
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System calibration

Offline calibration. Laboratory blackbody (BB) furnace [500-1500ºC]

• Corrects sensor non-linearities. Maps the collected counts by the spectrometer at 
each 𝜆𝑖 into the theoretical blackbody radiance at T𝑗.

Field calibration. Portable calibration lamp

• Accounts for daily mechanical variations (up to 15%)

Collected spectrometer 

counts per wavelength 𝜆𝑖 at 

BB temperature T𝑗

Theoretical BB 

radiance at 

temperature T𝑗

2nd degree poly  Per-wavelength

polynomial 

coefficients

Calibration lamp [500-900nm], 1500K

Lamp-induced radiance 

for spectrometer S after 

BB calibration

Current lamp-induced 

radiance for spectrometer S

Linear transmission 

coefficients

Offline calibration setup
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Radiative transfer model
Model formulation

Goal: TES - simultaneous estimation of the temperature 𝑻𝒃𝒃 and spectral emissivity 𝜺(𝝀, 𝑻𝒃𝒃) of the observed hot sample

From observed data: 

𝐶 𝜆 : number of counts per  wavelength

.
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Radiative transfer model
Model formulation

Goal: TES - simultaneous estimation of the temperature 𝑻𝒃𝒃 and spectral emissivity 𝜺(𝝀, 𝑻𝒃𝒃) of the observed hot sample

Selective radiator (emissive sample)

From observed data: 

𝐶 𝜆 : number of counts per  wavelength

.
Ideal BB 

radiator

Sample spectral

emissivity
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Radiative transfer model
Model formulation

Goal: TES - simultaneous estimation of the temperature 𝑻𝒃𝒃 and spectral emissivity 𝜺(𝝀, 𝑻𝒃𝒃) of the observed hot sample

Selective radiator (emissive sample)

From observed data: 

𝐶 𝜆 : number of counts per  wavelength

.
Ideal BB 

radiator

Atmospheric 

transmittance

Sample spectral

emissivity
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Radiative transfer model
Model formulation

Goal: TES - simultaneous estimation of the temperature 𝑻𝒃𝒃 and spectral emissivity 𝜺(𝝀, 𝑻𝒃𝒃) of the observed hot sample

Selective radiator (emissive sample)

Observed radiance at entry of capturing device

From observed data: 

𝐶 𝜆 : number of counts per  wavelength

.
Ideal BB 

radiator

Atmospheric 

transmittance

Sample spectral

emissivity
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Radiative transfer model
Model formulation

Goal: TES - simultaneous estimation of the temperature 𝑻𝒃𝒃 and spectral emissivity 𝜺(𝝀, 𝑻𝒃𝒃) of the observed hot sample

Selective radiator (emissive sample)

Optical 

system

Observed radiance at entry of capturing device

From observed data: 

𝐶 𝜆 : number of counts per  wavelength

.
Ideal BB 

radiator

Atmospheric 

transmittance

Sample spectral

emissivity



98

4
-T

E
S

Radiative transfer model
Model formulation

Goal: TES - simultaneous estimation of the temperature 𝑻𝒃𝒃 and spectral emissivity 𝜺(𝝀, 𝑻𝒃𝒃) of the observed hot sample

Selective radiator (emissive sample)

Optical 

system

Observed radiance at entry of capturing device

From observed data: 

𝐶 𝜆 : number of counts per  wavelength

This is the direct model.

We will solve the inverse problem:

estimate model parameters from noisy observations

.
Ideal BB 

radiator

Atmospheric 

transmittance

Sample spectral

emissivity
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Radiative transfer model
Model formulation: Ideal blackbody radiator 𝐿𝑏𝑏(𝜆, 𝑇𝑏𝑏)

Planck's law of black-body radiation: Spectral radiance of a BB at temperature 𝑇𝑏𝑏:

Planck constant

Boltzmann constant

Speed of light
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Radiative transfer model
Model formulation: Ideal blackbody radiator 𝐿𝑏𝑏(𝜆, 𝑇𝑏𝑏)

Planck's law of black-body radiation: Spectral radiance of a BB at temperature 𝑇𝑏𝑏:

Planck constant

Boltzmann constant

A correct estimation is critical!

Speed of light
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Radiative transfer model
Model formulation: Ideal blackbody radiator 𝐿𝑏𝑏(𝜆, 𝑇𝑏𝑏)

Planck's law of black-body radiation: Spectral radiance of a BB at temperature 𝑇𝑏𝑏:

Planck constant

Boltzmann constant

A correct estimation is critical!

Speed of light
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Radiative transfer model
Model formulation: Spectral emissivity 𝜀(𝜆, 𝑇𝑏𝑏) of the radiative source

• Modeled as M=10 probabilistic variables 𝜀𝑘 with 𝑘 = 1…𝑀

• M associated fuzzy sets with triangular membership

• Spectral emissivity at any 𝜆𝑖 as weighted value over 𝜀𝑘

1

0

𝜀1
𝜀2

𝜀𝑀
𝜀𝑀−1
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Radiative transfer model
Model formulation: Atmospheric transmitance 𝑇𝑎𝑡𝑚(𝜆)
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Absorbant a

Radiative transfer model
Model formulation: Atmospheric transmitance 𝑇𝑎𝑡𝑚(𝜆)

Distance

(set manually) Molar concentration

Unitary absorption coefficientLambert-Beer

Focus on 𝐶𝑂2 and 𝐻2𝑂
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Radiance of ideal BB (𝑇𝑏𝑏 = 1550º𝐶), filtered by simulated

𝑇𝑎𝑡𝑚 𝜆 , d = 1.5𝑚, 𝑇 = 27º𝐶. Typical concentrations.

Combined absorbance

Line-by-line cross-section information.

Modeled using HITRAN2016’s API (HAPI)

Equivalent (low-res) transmittance 𝑇𝑎𝑡𝑚(𝜆)
Convolved with spectrometers’ slit functions

BB radiance and 

atmosphere-filtered radiance

Absorbant a

Radiative transfer model
Model formulation: Atmospheric transmitance 𝑇𝑎𝑡𝑚(𝜆)

Distance

(set manually) Molar concentration

Unitary absorption coefficientLambert-Beer

Focus on 𝐶𝑂2 and 𝐻2𝑂
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Radiative transfer model
Model formulation: Final

Variations over precomputed 𝐾𝑠.
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Radiative transfer model
Model formulation: Final

Variations over precomputed 𝐾𝑠.

We will solve this through Bayesian inference

(Probabilistic Programming with PyMC3)



108

4
-T

E
S

Radiative transfer model
Solving the model through Bayesian probabilistic inference

𝑩𝒂𝒚𝒆𝒔′ 𝒇𝒐𝒓𝒎𝒖𝒍𝒂𝑃 𝜃 𝑥 =
𝑃 𝑥 𝜃 𝑃(𝜃)

𝑃(𝑥)
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Radiative transfer model
Solving the model through Bayesian probabilistic inference

𝑩𝒂𝒚𝒆𝒔′ 𝒇𝒐𝒓𝒎𝒖𝒍𝒂

𝑷 𝜽 𝒙 [Posterior probability distribution]

Our quantity of interest:

𝑃 𝜃 𝑥 = 𝑃 𝑇𝑏𝑏 , 𝜎, 𝑥𝐶𝑂2 , 𝑥𝐻2𝑂, 𝑘1, 𝑘2, 𝑘3, 𝜀1, … 𝜀𝑀 𝐿𝑜𝑏𝑠(λ)

What are the values of these parameters that best explain the

measured radiance data (𝐿𝑜𝑏𝑠(λ))?

𝑃 𝜃 𝑥 =
𝑃 𝑥 𝜃 𝑃(𝜃)

𝑃(𝑥)
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Radiative transfer model
Solving the model through Bayesian probabilistic inference

𝑷(𝜽) [Prior]

Incorporates our prior knowledge over the 

parameter values.

𝑩𝒂𝒚𝒆𝒔′ 𝒇𝒐𝒓𝒎𝒖𝒍𝒂

𝑷 𝜽 𝒙 [Posterior probability distribution]

Our quantity of interest:

𝑃 𝜃 𝑥 = 𝑃 𝑇𝑏𝑏 , 𝜎, 𝑥𝐶𝑂2 , 𝑥𝐻2𝑂, 𝑘1, 𝑘2, 𝑘3, 𝜀1, … 𝜀𝑀 𝐿𝑜𝑏𝑠(λ)

What are the values of these parameters that best explain the

measured radiance data (𝐿𝑜𝑏𝑠(λ))?

𝑃 𝜃 𝑥 =
𝑃 𝑥 𝜃 𝑃(𝜃)

𝑃(𝑥)
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Radiative transfer model
Solving the model through Bayesian probabilistic inference

𝑷(𝒙|𝜽) [Likelihood]

Describes how the data was generated.

Our forward model

𝑷(𝜽) [Prior]

Incorporates our prior knowledge over the 

parameter values.

𝑩𝒂𝒚𝒆𝒔′ 𝒇𝒐𝒓𝒎𝒖𝒍𝒂

𝑷 𝜽 𝒙 [Posterior probability distribution]

Our quantity of interest:

𝑃 𝜃 𝑥 = 𝑃 𝑇𝑏𝑏 , 𝜎, 𝑥𝐶𝑂2 , 𝑥𝐻2𝑂, 𝑘1, 𝑘2, 𝑘3, 𝜀1, … 𝜀𝑀 𝐿𝑜𝑏𝑠(λ)

What are the values of these parameters that best explain the

measured radiance data (𝐿𝑜𝑏𝑠(λ))?

𝑃 𝜃 𝑥 =
𝑃 𝑥 𝜃 𝑃(𝜃)

𝑃(𝑥)
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Radiative transfer model
Solving the model through Bayesian probabilistic inference

𝑷(𝒙|𝜽) [Likelihood]

Describes how the data was generated.

Our forward model

𝑷(𝜽) [Prior]

Incorporates our prior knowledge over the 

parameter values.

𝑷 𝒙 [Evidence]

𝑃 𝑥 = 𝜃׬ 𝑃 𝑥, 𝜃 𝑑𝜃 (No closed-form solution)

𝑩𝒂𝒚𝒆𝒔′ 𝒇𝒐𝒓𝒎𝒖𝒍𝒂

𝑷 𝜽 𝒙 [Posterior probability distribution]

Our quantity of interest:

𝑃 𝜃 𝑥 = 𝑃 𝑇𝑏𝑏 , 𝜎, 𝑥𝐶𝑂2 , 𝑥𝐻2𝑂, 𝑘1, 𝑘2, 𝑘3, 𝜀1, … 𝜀𝑀 𝐿𝑜𝑏𝑠(λ)

What are the values of these parameters that best explain the

measured radiance data (𝐿𝑜𝑏𝑠(λ))?

𝑃 𝜃 𝑥 =
𝑃 𝑥 𝜃 𝑃(𝜃)

𝑃(𝑥)
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Radiative transfer model
Solving the model through Bayesian probabilistic inference

𝑷(𝒙|𝜽) [Likelihood]

Describes how the data was generated.

Our forward model

𝑷(𝜽) [Prior]

Incorporates our prior knowledge over the 

parameter values.

𝑷 𝒙 [Evidence]

𝑃 𝑥 = 𝜃׬ 𝑃 𝑥, 𝜃 𝑑𝜃 (No closed-form solution)

𝑩𝒂𝒚𝒆𝒔′ 𝒇𝒐𝒓𝒎𝒖𝒍𝒂

𝑃 𝜃 𝑥 ∝ 𝑃 𝑥 𝜃 𝑃(𝜃)

𝑷 𝜽 𝒙 [Posterior probability distribution]

Our quantity of interest:

𝑃 𝜃 𝑥 = 𝑃 𝑇𝑏𝑏 , 𝜎, 𝑥𝐶𝑂2 , 𝑥𝐻2𝑂, 𝑘1, 𝑘2, 𝑘3, 𝜀1, … 𝜀𝑀 𝐿𝑜𝑏𝑠(λ)

What are the values of these parameters that best explain the

measured radiance data (𝐿𝑜𝑏𝑠(λ))?

Build a Markov Chain generating samples, with a 

distribution that matches the posterior:

Simultaneous estimation of every parameter with a 

measure of its uncertainty

𝑃 𝜃 𝑥 =
𝑃 𝑥 𝜃 𝑃(𝜃)

𝑃(𝑥)

We only need likelihood and priors!
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Radiative transfer model
Solving the model through Bayesian probabilistic inference
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Radiative transfer model
Solving the model through Bayesian probabilistic inference

𝐿𝑏𝑏(𝜆, 𝑇𝑏𝑏)
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Radiative transfer model
Solving the model through Bayesian probabilistic inference

𝐿𝑏𝑏(𝜆, 𝑇𝑏𝑏)

𝑇𝑎𝑡𝑚(𝜆)
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Radiative transfer model
Solving the model through Bayesian probabilistic inference

𝐿𝑏𝑏(𝜆, 𝑇𝑏𝑏)

𝑇𝑎𝑡𝑚(𝜆)

𝜀(𝜆, 𝑇𝑏𝑏)
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Radiative transfer model
Solving the model through Bayesian probabilistic inference

𝐿𝑏𝑏(𝜆, 𝑇𝑏𝑏)

𝑇𝑎𝑡𝑚(𝜆)

𝜀(𝜆, 𝑇𝑏𝑏)
𝑇𝑂𝑆
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Radiative transfer model
Solving the model through Bayesian probabilistic inference

𝐿𝑏𝑏(𝜆, 𝑇𝑏𝑏)

𝑇𝑎𝑡𝑚(𝜆)

𝜀(𝜆, 𝑇𝑏𝑏)
𝑇𝑂𝑆
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Radiative transfer model
Solving the model through Bayesian probabilistic inference

𝐿𝑏𝑏(𝜆, 𝑇𝑏𝑏)

𝑇𝑎𝑡𝑚(𝜆)

𝜀(𝜆, 𝑇𝑏𝑏)
𝑇𝑂𝑆

Our likelihood term: we model
the error between the observed
and expected radiances as a
normal distribution
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Experimental validation
Setup

Testing is difficult!

Two solid samples with well-characterized emissivities: 

Laboratory equipment (HAIRL emissometer). 
Range: 100-860ºC

Our device: remote Temperature, Emissivity. 
Range: 600-1100ºC 

• Alumina (𝐴𝑙2𝑂3), 

• Boron nitride (𝐵𝑁)
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Experimental validation
Posterior probabilities

Alumina

Boron
nitride
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Experimental validation
Results (radiances, spectral emissivities, temperatures)

Alumina

Boron
nitride

RMSE=32.3ºC

RMSE=5.7ºC
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Experimental validation
Results (spectral emissivity)

Laboratory [   ] vs ours [--]

Alumina

Boron
nitride
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Experimental validation
Results (spectral emissivity)

Laboratory [   ] vs ours [--]

(semi-

transparent)

(semi-

transp

arent)

𝐶𝑂2 𝐻2𝑂

Alumina

Boron
nitride
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Takeaways

• Device and model yielding simultaneous remote estimates for temperature and spectral emissivity of
hot radiative samples in near-steel factory conditions.

• MCMC-based full-probability estimates for various process variables: 𝑇𝑏𝑏 , 𝜀1, … 𝜀𝑀 , (𝑥𝐶𝑂2 , 𝑥𝐻2𝑂)

• Validated for two solid samples [600-850ºC]

• Necessary first step for remote online estimation of slag composition on EAF

Publication A. Picon*, A. Alvarez-Gila*, J. A. Arteche, G. A. López, and A. Vicente, “A Probabilistic Model and Capturing Device for Remote
Simultaneous Estimation of Spectral Emissivity and Temperature of Hot Emissive Materials,” IEEE Access, 2021.
*Equal contribution

Patent A. Picon, A. Alvarez-Gila, A. Vicente, and Arteche, Jose Antonio, “System and method for determining the emitting temperature
and emissivity in a wavelength range of metallurgical products,” PCT/IB2019/061335 , filed December 24, 2019
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Introduction
Motivation

• Self/inter-occlusions

• Small apparent sized objects

• Ambiguous views + fine grained categories

• Ambiguities induced by appearance variation across views 
(e.g. specularities) 

Hypothesis:
“Data driven dense prediction models could benefit from 

complementary information in multi-view setups”

Condition: wide baselines between views (more informative)

Performance of monocular 2D semantic segmentation systems in densely populated scenes is hindered by:
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MVMO
The Multi-View, Multi-Object Dataset

100k train + 8k val + 8k test scenes

15-20 objects/scene:

• Sampled from ModelNet10

• 10 annotated categories

• Diversified appearance/BSDF

25 camera locations at the upper hemisphere at 4 levels

Wide-baselines →large disparities

High density of objects →Multiple occlusions
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MVMO
The Multi-View, Multi-Object Dataset

100k train + 8k val + 8k test scenes

15-20 objects/scene:

• Sampled from ModelNet10

• 10 annotated categories

• Diversified appearance/BSDF

25 camera locations at the upper hemisphere at 4 levels

Wide-baselines →large disparities

High density of objects →Multiple occlusions

Goal: boost research in [wide baseline]… 

• (i) multi-view semantic segmentation

• (ii) cross-view semantic transfer from single view labels.
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Experimental baselines
Setup

5 cameras at 3 different levels (L0, L2, L3) 

Imagenet pretrained U-Net architecture
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Experimental baselines
Experiment 1: cross view semantic transfer via direct testing

Given a model, 𝑓𝑣𝑟→𝑠𝑠𝑟, trained on (𝑣𝑟 , 𝑠𝑠𝑟) pairs, we want to feed it with inputs from view 𝑣𝑡 and obtain 

𝑠𝑠𝑡 segmentation results referenced to 𝑣𝑡 (𝑠𝑠𝑡).
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Experimental baselines
Experiment 1: cross view semantic transfer via direct testing

Given a model, 𝑓𝑣𝑟→𝑠𝑠𝑟, trained on (𝑣𝑟 , 𝑠𝑠𝑟) pairs, we want to feed it with inputs from view 𝑣𝑡 and obtain 

𝑠𝑠𝑡 segmentation results referenced to 𝑣𝑡 (𝑠𝑠𝑡).

Fully-sup monocular
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Experimental baselines
Experiment 1: cross view semantic transfer via direct testing

Given a model, 𝑓𝑣𝑟→𝑠𝑠𝑟, trained on (𝑣𝑟 , 𝑠𝑠𝑟) pairs, we want to feed it with inputs from view 𝑣𝑡 and obtain 

𝑠𝑠𝑡 segmentation results referenced to 𝑣𝑡 (𝑠𝑠𝑡).

Good generalization

to unseen objects
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Experimental baselines
Experiment 1: cross view semantic transfer via direct testing

Given a model, 𝑓𝑣𝑟→𝑠𝑠𝑟, trained on (𝑣𝑟 , 𝑠𝑠𝑟) pairs, we want to feed it with inputs from view 𝑣𝑡 and obtain 

𝑠𝑠𝑡 segmentation results referenced to 𝑣𝑡 (𝑠𝑠𝑡).

L2↔L2

No gap

L0↔L2

Performance drop

Good generalization

to unseen objects



149

5
-M

V
M

O

Experimental baselines
Experiment 1: cross view semantic transfer via direct testing

Given a model, 𝑓𝑣𝑟→𝑠𝑠𝑟, trained on (𝑣𝑟 , 𝑠𝑠𝑟) pairs, we want to feed it with inputs from view 𝑣𝑡 and obtain 
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Experimental baselines
Experiment 2: planar homography-based transfer

Given a model, 𝑓𝑣𝑟→𝑠𝑠𝑟, trained on (𝑣𝑟 , 𝑠𝑠𝑟) pairs, we want to feed it with inputs from view 𝑣𝑡 and obtain 

𝑠𝑠𝑡 segmentation results referenced to 𝑣𝑡 (𝑠𝑠𝑡).

Planar (3x3) homography mapping holds only for (i) quasi-planar scenes (ii) distant objects

(+4,09) (-4,74)

Computation (4-point correspondence):
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Experimental baseline
Experiment 2: planar homography-based transfer
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Experimental baseline
Experiment 2: planar homography-based transfer

→

→
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Experimental baseline
Experiment 2: planar homography-based transfer

→
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Takeaways

Introduced MVMO: (i) wide baseline (ii) multi-view (iii) synthetic dataset (iv) with semantic 
segmentation annotations that features (v) high object density and (vi) large number of occlusions.

Goal: Propel research in

(i) multi-view semantic segmentation 

(ii) cross-view semantic transfer,

addressing limitations of monocular setups in heavily-occluded scenes

Publication A. Alvarez-Gila, J. Van De Weijer, Y. Wang, and E. Garrote, “MVMO: A Multi-Object Dataset for Wide Baseline Multi-View
Semantic Segmentation,” ICIP 2022 (accepted).

https://aitorshuffle.github.io/projects/mvmo/

https://aitorshuffle.github.io/projects/mvmo/
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Problem statement

• Monocular semantic segmentation system trained
fully-supervised requiring camera relocation (e.g.
industrial in-line production system): 𝑣r → 𝑣𝑡

• Inference with model trained on reference view
(𝑣r) fails (domain shift).

• Labeling from new pose is very costly.

Reference view, 𝑣r
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Problem statement

Target view, 𝑣𝑡

Reference view, 𝑣r

• Monocular semantic segmentation system trained
fully-supervised requiring camera relocation (e.g.
industrial in-line production system): 𝑣r → 𝑣𝑡

• Inference with model trained on reference view
(𝑣r) fails (domain shift).

• Labeling from new pose is very costly.
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Problem statement

Reference view, 𝒗𝒓

Target view, 𝒗𝒕
• Monocular semantic segmentation system trained

fully-supervised requiring camera relocation (e.g.
industrial in-line production system): 𝒗𝒓 → 𝒗𝒕

• Inference with model trained on reference view
(𝒗𝒓) fails (domain shift).

• Labeling from new pose is very costly.

• Pure geometry-based tools (3x3 planar
homography 𝐻𝑟→𝑡

𝑧=0) fail for wide baselines.

• We need cross-view knowledge transfer tools that
exploit statistical priors for cheap camera
relocations.
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Problem statement

Idea:

Leverage unlabeled (reference, target) 
view pairs.

Reference view, 𝒗𝒓

Target view, 𝒗𝒕
• Monocular semantic segmentation system trained

fully-supervised requiring camera relocation (e.g.
industrial in-line production system): 𝒗𝒓 → 𝒗𝒕

• Inference with model trained on reference view
(𝒗𝒓) fails (domain shift).

• Labeling from new pose is very costly.

• Pure geometry-based tools (3x3 planar
homography 𝐻𝑟→𝑡

𝑧=0) fail for wide baselines.

• We need cross-view knowledge transfer tools that
exploit statistical priors for cheap camera
relocations.

Ch.5 (MVMO), Ch.6 (ZPCVNet)
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Zero pair, cross-view semantic segmentation

     

           

Reference view, 𝑣r

• New semi-supervised task: 

Zero-Pair, Cross-View semantic segmentation

• Train on:

• Reference view (𝑣r), labeled dataset 𝒟𝑟,𝑙

• Disjoint cross-view, unlabeled dataset 𝒟𝑢
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Zero pair, cross-view semantic segmentation

Reference view, 𝑣r

     

           

Target view, 𝑣𝑡 • New semi-supervised task: 

Zero-Pair, Cross-View semantic segmentation

• Train on:

• Reference view (𝑣r), labeled dataset 𝒟𝑟,𝑙

• Disjoint cross-view, unlabeled dataset 𝒟𝑢
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Zero pair, cross-view semantic segmentation

         

           

  
 
 
 

Target view, 𝑣𝑡 • New semi-supervised task: 

Zero-Pair, Cross-View semantic segmentation

• Train on:

• Reference view (𝑣r), labeled dataset 𝒟𝑟,𝑙

• Disjoint cross-view, unlabeled dataset 𝒟𝑢

• Inference: 

• Input from target view, 𝑣𝑡
• Predict on both reference, and target views
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Zero pair, cross-view semantic segmentation

         

           

  
 
 
 

Reference view, 𝑣r

Target view, 𝑣𝑡 • New semi-supervised task: 

Zero-Pair, Cross-View semantic segmentation

• Train on:

• Reference view (𝑣r), labeled dataset 𝒟𝑟,𝑙

• Disjoint cross-view, unlabeled dataset 𝒟𝑢

• Inference: 

• Input from target view, 𝑣𝑡
• Predict on both reference, and target views

(useful for downstream

vision/manipulation)
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Related work
Mix&Match Networks [Wang2020]

Translation between domain/modality pairs not seen during training

Enforcing latent space alignment of encoder-decoder pairs

[Johnson2016] M. Johnson et al., “Google's multilingual neural machine translation system: enabling zero-shot translation,” arXiv, 2016

[Wang2020] Y. Wang et al., “Mix and match networks: multi-domain alignment for unpaired image-to-image translation,” IJCV 2020
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Model
ZPCVNet

• ZPCVNet modules:

• Reference-view fully-
supervised semantic
segmentation Encoder-Decoder
[Er-Gr]

• Reference-view Autoencoder
[Er-Fr]

• Cross-view Encoder-Decoder
on RGB views
[Et-CVT-Fr]

• Seek latent space alignment

• Cross-View Transformer

• Shared weights

• Pseudolabels
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Model
ZPCVNet

• ZPCVNet modules:

• Reference-view fully-
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[Er-Fr]

• Cross-view Encoder-Decoder
on RGB views
[Et-CVT-Fr]

• Seek latent space alignment

• Cross-View Transformer

• Shared weights

• Pseudolabels



170

6
-Z

P
C

V
N

e
t

Model
ZPCVNet

• ZPCVNet modules:

• Reference-view fully-
supervised semantic
segmentation Encoder-Decoder
[Er-Gr]

• Reference-view Autoencoder
[Er-Fr]

• Cross-view Encoder-Decoder
on RGB views
[Et-CVT-Fr]

• Seek latent space alignment

• Cross-View Transformer

• Shared weights

• Pseudolabels

• Inference: Semantic predictions on 

viewpoints that have no semantic 

ground truth
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Experiments
Setup

Dataset: MVMO (Other Objects subset, 64x64)

Train with no available ground truth from the new viewpoint. Fully-supervised approach is not possible. 

½ batch from each dataset (labeled 𝒟𝑟,𝑙 , unlabeled 𝒟𝑢)

Reference view 𝑣r
𝐿2. 𝑐𝑎𝑚8

Target view 𝑣𝑡
L0.cam0 
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Experiment 1
Cross-view with output in 𝒗𝒓

Input (𝒗𝒕)

𝒗𝒓 (not provided)

Ground truth (in 𝒗𝒓)

Ours

Experiment1: Output in 𝒗𝒓
IoU

Upper bound: train-test on 𝑣𝑟
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Experiment 1
Cross-view with output in 𝒗𝒓

Input (𝒗𝒕)

𝒗𝒓 (not provided)

Ground truth (in 𝒗𝒓)

Ours

Experiment1: Output in 𝒗𝒓

Ablation: both CVT and pseudolabels are needed

IoU

Upper bound: train-test on 𝑣𝑟
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Experiment 2
Cross-view with output in 𝒗𝒕

Input (𝑣𝑡)

𝑣𝑟 (not provided)

Ground truth

Ours

Experiment2: Output in 𝒗𝒕

(upper bound)

IoU
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Takeaways

• New semi-supervised task: Zero-Pair, Cross-View semantic segmentation

• ZPCVNet model: 

Reasonable predictions on both references with one model (pluging CVT in/out)

Outperforms other learned (deep) and geometry-based baselines over MVMO

Initial baseline for further research in dense semantic knowledge transfer across views

Publication A. Alvarez-Gila, J. Van De Weijer, Y. Wang, and E. Garrote, “Zero-Pair Semi-Supervised Cross-View Semantic Segmentation,” 3DV
2022 (under review).
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Conclusions

Self-Supervised Blur Detection 
from Synthetically Blurred Scenes

3

4

Contribution: Learning framework for self/weak/semi-supervised blur detection from synthetic

degradation model. State-of-the art results without access to real blur masks.

Adversarial Networks for Spatial Context-Aware 
Spectral Image Reconstruction from RGB

Contribution: Method for spectral super-resolution from RGB images leveraging spatial context,

achieving state-of-the art results.

A Probabilistic Model and Capturing Device for Remote Simultaneous
Estimation of Spectral Emissivity and Temperature of Hot Emissive Materials

Contribution: Device and general Bayesian probabilistic method achieving remote online estimates

for temperature and spectral emissivity with quantification of uncertainty, with a real application in

EAF-based steelmaking.
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5

Conclusions

MVMO: A Multi-Object Dataset for
Wide Baseline Multi-View Semantic Segmentation

6

Contribution: New synthetic dataset (and code) enabling research in novel research lines: multi-view

and cross-view semantic segmentation.

Future work:

(i) Code extension for additional modalities to support multi-modal and object-centric tasks.

Zero-Pair Semi-Supervised 
Cross-View Semantic Segmentation

Contribution: Novel semi-supervised task of zero-pair, cross-view semantic segmentation applicable

to inline industrial scenarios. New method (ZPCVNet) outperforming geometric and deep baselines.

Future work:

(i) Adaptation of 2nd wave self-supervised methods to multi/cross view dense prediction tasks.

(ii) Inclusion of inductive biases from multiple-view geometry (e.g. epipolar constraint)

(iii) Attention-guided Cross View Transformer for dynamic spatial feature mapping across views.
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Summary of published works (I)

[1] A. Alvarez-Gila, A. Galdran, E. Garrote, and J. van de Weijer, “Self-supervised blur detection from synthetically blurred
scenes,” Image and Vision Computing, 2019.

[2] A. Alvarez-Gila, J. van de Weijer, and E. Garrote, “Adversarial Networks for Spatial Context-Aware Spectral Image
Reconstruction from RGB,” ICCVW 2017
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*Equal contribution

[5] A. Picon, A. Alvarez-Gila, A. Vicente, and Arteche, Jose Antonio, “System and method for determining the emitting
temperature and emissivity in a wavelength range of metallurgical products,” PCT/IB2019/061335 , filed December 24, 2019
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Semantic Segmentation,” ICIP 2022.

[7] A. Alvarez-Gila, J. Van De Weijer, Y. Wang, and E. Garrote, “Zero-Pair Semi-Supervised Cross-View Semantic
Segmentation,” 3DV 2022 (under review).

MVMO

ZPCVNet

TES

RGB2HSI

RGB2HSI

TES

SynthBlur
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Summary of published works (II)
Side projects at Tecnalia - Publications

Inverse problems – dehazing:

[8] A. Galdran, A. Alvarez-Gila, A. Bria, J. Vazquez-Corral, and M. Bertalmío, “On the Duality Between Retinex and Image Dehazing,” CVPR 2018.
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