Self-supervised learning for image-to-image translation in the small data regime

PhD thesis dissertation by Aitor Álvarez Gila

Directors:

Joost van de Weijer

Estibaliz Garrote

CVC, Bellaterra

2022-07-19

Computer Vision Center

MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE

tecnal:a

Self-supervised learning for image-to-image translation in the small data regime

	Introduction	
2	Self-Supervised Blur Detection from Synthetically Blurred Scenes	SynthBlur
3	Adversarial Networks for Spatial Context-Aware Spectral Image Reconstruction from RGB	RGB2HSI
4	A Probabilistic Model and Capturing Device for Remote Simultaneous Estimation of Spectral Emissivity and Temperature of Hot Emissive Materials	TES
5	MVMO: A Multi-Object Dataset for Wide Baseline Multi-View Semantic Segmentation	MVMO
6	Zero-Pair Semi-Supervised Cross-View Semantic Segmentation	ZPCVNet
_		

7 Conclusions

La faca de la Cara

Self-supervised learning for image-to-image translation in the small data regime

1 Introduction

2	Self-Supervised Blur Detection from Synthetically Blurred Scenes	SynthBlur
3	Adversarial Networks for Spatial Context-Aware Spectral Image Reconstruction from RGB	RGB2HSI
4	A Probabilistic Model and Capturing Device for Remote Simultaneous Estimation of Spectral Emissivity and Temperature of Hot Emissive Materials	TES
5	MVMO: A Multi-Object Dataset for Wide Baseline Multi-View Semantic Segmentation	MVMO
6	Zero-Pair Semi-Supervised Cross-View Semantic Segmentation	ZPCVNet
7	Conclusions	

Overcome the fully supervised, end-to-end paradigm on large-scale annotated datasets Leverage our prior knowledge of image formation process

Small *labeled* data domain

Chapter	Small data	Technique	Prior knowledge/Physics	Synthetic
Ch.2 (SynthBlur)	Few/Auto labels	CNN	Blurred image formation	Ground Truth
Ch.3 (RGB2HSI)	Auto labels	CNN	Color image formation	Input
Ch.4 (TES)	No labels	PP	Radiative Transfer	-
Ch.5 (MVMO), Ch.6 (ZPCVNet)) Few labels	CNN	Path tracing	(Input, Ground Truth)

Overcome the fully supervised, end-to-end paradigm on large-scale annotated datasets Leverage our prior knowledge of image formation process

Chapter	Small data	Technique	Prior knowledge/Physics	Synthetic
Ch.2_(SynthBlur)	Few/Auto labels	CNN	Blurred image formation	Ground Truth
Ch.3 (RGB2HSI)	Auto labels	CNN	Color image formation	Input
Ch.4 (TES)	No labels	PP	Radiative Transfer	-
Ch.5 (MVMO), Ch.6 (ZPCVNet	Few labels	CNN	Path tracing	(Input, Ground Truth)

Overcome the fully supervised, end-to-end paradigm on large-scale annotated datasets Leverage our prior knowledge of image formation process

Chapter	Small data	Technique	Prior knowledge/Physics	Synthetic
Ch.2 (SynthBlur)	Few/Auto labels	CNN	Blurred image formation	Ground Truth
Ch.3 (RGB2HSI)	Auto labels	CNN	Color image formation	Input
Ch.4 (TES)	No labels	PP	Radiative Transfer	-
Ch.5 (MVMO), Ch.6 (ZPCVNet)	Few labels	CNN	Path tracing	(Input, Ground Truth)

Overcome the fully supervised, end-to-end paradigm on large-scale annotated datasets Leverage our prior knowledge of image formation process

Chapter	Small data	Technique	Prior knowledge/Physics	Synthetic
Ch.2 (SynthBlur)	Few/Auto labels	CNN	Blurred image formation	Ground Truth
Ch.3 (RGB2HSI)	Auto labels	CNN	Color image formation	Input
Ch.4 (TES)	No labels	PP	Radiative Transfer	-
Ch.5 (MVMO), Ch.6 (ZPCVNet) Few labels	CNN	Path tracing	(Input, Ground Truth)

Overcome the fully supervised, end-to-end paradigm on large-scale annotated datasets Leverage our prior knowledge of image formation process

Chapter	Small data	Technique	Prior knowledge/Physics	Synthetic
Ch.2 (SynthBlur)	Few/Auto labels	CNN	Blurred image formation	Ground Truth
Ch.3 (RGB2HSI)	Auto labels	CNN	Color image formation	Input
Ch.4 (TES)	No labels	PP	Radiative Transfer	-
Ch.5 (MVMO), Ch.6 (ZPCVNet	Few labels	CNN	Path tracing	(Input, Ground Truth)

Self-supervised learning for image-to-image translation in the small data regime

1		nt	ro	du	cti	on
---	--	----	----	----	-----	----

2	Self-Supervised Blur Detection from Synthetically Blurred Scenes	SynthBlur
3	Adversarial Networks for Spatial Context-Aware Spectral Image Reconstruction from RGB	RGB2HSI
4	A Probabilistic Model and Capturing Device for Remote Simultaneous Estimation of Spectral Emissivity and Temperature of Hot Emissive Materials	TES
5	MVMO: A Multi-Object Dataset for Wide Baseline Multi-View Semantic Segmentation	MVMO
6	Zero-Pair Semi-Supervised Cross-View Semantic Segmentation	ZPCVNet
7	Conclusions	

Problem statement

Image blur detection for...

Defocus blur:

Wide aperture projecting scene points on a circle of confusion

Motion blur:

Object/camera movement during exposure

Image: phlearn.com

Fully sup progress hindered by _ lack of large scale datasets \rightarrow

lered by	Chapter	Small data	Technique	Prior knowledge/Physics	Synthetic
sets \rightarrow	Ch.2 (SynthBlur)	Few/Auto labels	CNN	Blurred image formation	Ground Truth

Overview

One framework, 3 instantiations

Overview

Blur mask extraction

Weakly-supervised path: VOC2012 ground truth *semantic masks*

> Self-supervised path: Unsupervised *object proposals* via Multiscale Combinatorial Grouping (MCG) [Pont-Tuset,TPAMI 2017]

* Invert blur mask with prob *p* to avoid foreground bias.

Overview

Synthetic blurring

Motion: non-linear motion blur kernel $K_{(m,\alpha,\mathcal{E})}$: elastic deformation over rotated line $\frac{\text{length}}{\text{rotation angle}} = \frac{\text{Elastic deformation}}{\text{Elastic deformation}}$

Synthetic blurring

Halo artifact removal through inpainting

Prevents the model from learning shortcuts for blur detection.

Evaluation on [Shi2014]'s 500 even images

- Large receptive fields (atrous convolutions)
- Multi-scale feature fusion

Best, 2nd best and 3rd best

		AUC			AP	
Method	Defocus	Motion	All	Defocus	Motion	All
Liu et al. [151]	0.722	0.714	0.720	0.792	0.683	0.760
Chakrabarti [32]	0.745	0.640	0.714	0.837	0.675	0.789
Su et al. [246]	0.807	0.750	0.790	0.859	0.707	0.814
Shi <i>et al.</i> [238]	0.836	0.735	0.806	0.876	0.699	0.823
LBP [284]	0.855	0.678	0.802	0.876	0.683	0.819
HiFST [81]	0.901	0.804	0.873	0.928	0.744	0.874
Ma et al. [159] (fully supervised ad hoc CNN)	0.947	0.861	0.922	0.966	0.784	0.912
Ours self-supervised	0.945	0.905	0.933	0.960	0.838	0.924
Ours weakly supervised (segmentation masks)	0.941	0.897	0.928	0.959	0.849	0.926
Ours semi-supervised (joint with 400 odd img.)	0.956	0.904	0.941	0.974	0.840	0.934
Fully supervised (finetuned to 400 odd img.)	0.943	0.875	0.923	0.965	0.819	0.922

Evaluation on [Shi2014]'s 500 even images

- Large receptive fields (atrous convolutions)
- Multi-scale feature fusion

Best, 2nd best and 3rd best

		AUC			AP	
Method	Defocus	Motion	All	Defocus	Motion	All
Liu <i>et al</i> . [151]	0.722	0.714	0.720	0.792	0.683	0.760
Chakrabarti [32]	0.745	0.640	0.714	0.837	0.675	0.789
Su <i>et al</i> . [246]	0.807	0.750	0.790	0.859	0.707	0.814
Shi <i>et al.</i> [238]	0.836	0.735	0.806	0.876	0.699	0.823
LBP [284]	0.855	0.678	0.802	0.876	0.683	0.819
HiFST [81]	0.901	0.804	0.873	0.928	0.744	0.874
Ma et al. [159] (fully supervised ad hoc CNN)	0.947	0.861	0.922	0.966	0.784	0.912
Ours self-supervised	0.945	0.905	0.933	0.960	0.838	0.924
Ours weakly supervised (segmentation masks)	0.941	0.897	0.928	0.959	0.849	0.926
Ours semi-supervised (joint with 400 odd img.)	0.956	0.904	0.941	0.974	0.840	0.934
Fully supervised (finetuned to 400 odd img.)	0.943	0.875	0.923	0.965	0.819	0.922

Evaluation on [Shi2014]'s 500 even images

- Large receptive fields (atrous convolutions)
- Multi-scale feature fusion

Best, 2nd best and 3rd best

		AUC			AP	
Method	Defocus	Motion	All	Defocus	Motion	All
Liu et al. [151]	0.722	0.714	0.720	0.792	0.683	0.760
Chakrabarti [32]	0.745	0.640	0.714	0.837	0.675	0.789
Su <i>et al.</i> [246]	0.807	0.750	0.790	0.859	0.707	0.814
Shi <i>et al.</i> [238]	0.836	0.735	0.806	0.876	0.699	0.823
LBP [284]	0.855	0.678	0.802	0.876	0.683	0.819
HiFST [81]	0.901	0.804	0.873	0.928	0.744	0.874
Ma et al. [159] (fully supervised ad hoc CNN)	0.947	0.861	0.922	0.966	0.784	0.912
Ours self-supervised	0.945	0.905	0.933	0.960	0.838	0.924
Ours weakly supervised (segmentation masks)	0.941	0.897	0.928	0.959	0.849	0.926
Ours semi-supervised (joint with 400 odd img.)	0.956	0.904	0.941	0.974	0.840	0.934
Fully supervised (finetuned to 400 odd img.)	0.943	0.875	0.923	0.965	0.819	0.922

Evaluation on [Shi2014]'s 500 even images

- Large receptive fields (atrous convolutions)
- Multi-scale feature fusion

Best, 2nd best and 3rd best

		AUC			AP	
Method	Defocus	Motion	All	Defocus	Motion	All
Liu et al. [151]	0.722	0.714	0.720	0.792	0.683	0.760
Chakrabarti [32]	0.745	0.640	0.714	0.837	0.675	0.789
Su <i>et al.</i> [246]	0.807	0.750	0.790	0.859	0.707	0.814
Shi <i>et al.</i> [238]	0.836	0.735	0.806	0.876	0.699	0.823
LBP [284]	0.855	0.678	0.802	0.876	0.683	0.819
HiFST [81]	0.901	0.804	0.873	0.928	0.744	0.874
Ma et al. [159] (fully supervised ad hoc CNN)	0.947	0.861	0.922	0.966	0.784	0.912
Ours self-supervised	0.945	0.905	0.933	0.960	0.838	0.924
Ours weakly supervised (segmentation masks)	0.941	0.897	0.928	0.959	0.849	0.926
Ours semi-supervised (joint with 400 odd img.)	<u>0.956</u>	0.904	<u>0.941</u>	<u>0.974</u>	0.840	<u>0.934</u>
Fully supervised (finetuned to 400 odd img.)	0.943	0.875	0.923	0.965	0.819	0.922

Evaluation on [Shi2014]'s 500 even images

- Large receptive fields (atrous convolutions)
- Multi-scale feature fusion

Best, 2nd best and 3rd best

		AUC			AP	
Method	Defocus	Motion	All	Defocus	Motion	All
Liu <i>et al.</i> [151]	0.722	0.714	0.720	0.792	0.683	0.760
Chakrabarti [32]	0.745	0.640	0.714	0.837	0.675	0.789
Su et al. [246]	0.807	0.750	0.790	0.859	0.707	0.814
Shi <i>et al.</i> [238]	0.836	0.735	0.806	0.876	0.699	0.823
LBP [284]	0.855	0.678	0.802	0.876	0.683	0.819
HiFST [81]	0.901	0.804	0.873	0.928	0.744	0.874
Ma et al. [159] (fully supervised ad hoc CNN)	0.947	0.861	0.922	0.966	0.784	0.912
Ours self-supervised	0.945	0.905	0.933	0.960	0.838	0.924
Ours weakly supervised (segmentation masks)	0.941	0.897	0.928	0.959	0.849	0.926
Ours semi-supervised (joint with 400 odd img.)	0.956	0.904	0.941	0.974	0.840	0.934
Fully supervised (finetuned to 400 odd img.)	0.943	0.875	0.923	0.965	0.819	0.922

Evaluation on [Shi2014]'s 500 even images

Segmentation CNN: Deeplabv3[Resnet101]

- Large receptive fields (atrous convolutions)
- Multi-scale feature fusion

Best, 2nd best and 3rd best

		AUC			AP	
Method	Defocus	Motion	All	Defocus	Motion	All
Liu et al. [151]	0.722	0.714	0.720	0.792	0.683	0.760
Chakrabarti [32]	0.745	0.640	0.714	0.837	0.675	0.789
Su et al. [246]	0.807	0.750	0.790	0.859	0.707	0.814
Shi <i>et al.</i> [238]	0.836	0.735	0.806	0.876	0.699	0.823
LBP [284]	0.855	0.678	0.802	0.876	0.683	0.819
HiFST [81]	0.901	0.804	0.873	0.928	0.744	0.874
Ma et al. [159] (fully supervised ad hoc CNN)	0.947	0.861	0.922	0.966	0.784	0.912
Ours self-supervised	0.945	0.905	0.933	0.960	0.838	0.924
Ours weakly supervised (segmentation masks)	0.941	0.897	0.928	0.959	0.849	0.926
Ours semi-supervised (joint with 400 odd img.)	0.956	0.904	<u>0.941</u>	0.974	0.840	<u>0.934</u>
Fully supervised (finetuned to 400 odd img.)	0.943	0.875	0.923	0.965	0.819	0.922

٠

- Our methods beat non-deep and fully supervised deep ad-hoc CNNs (especially motion blur)
- It's not the architecture
- Self and weak supervision ~on pair

[Shi2014] J. Shi et al., "Discriminative Blur Detection Features," CVPR 2014.

Evaluation on [Shi2014]'s 500 even images. Semi-supervised setup (joint training)

Evaluation on [Shi2014]'s 500 even images. Semi-supervised setup (joint training)

Evaluation on [Shi2014]'s 500 even images. Semi-supervised setup (joint training)

Cross-dataset generalization

Method	AUC	AP	
Zhao <i>et al</i> . [294] Ma <i>et al</i> . [159]	0.913 0.923	0.946 0.956	
Ours self-supervised Ours weakly supervised	0.950 0.915	0.976 0.953	Robust generalization
Fully supervised	0.904	0.952	

 $[Shi2014] \rightarrow [Zhao2018]$ direct transfer.

Defocus blur-only dataset

Takeaways

•

- Framework for defocus and motion blur segmentation from procedural synthetic local (semantically coherent) blurring. Instantiations:
 - Self-supervised
 - Weakly-supervised No need for blur segmentation labels
 - Semi-supervised
- Good generalization
- Useful for few-data domains , e.g. medical, text, multi-spectral

Publication A. Alvarez-Gila, A. Galdran, E. Garrote, and J. van de Weijer, "Self-supervised blur detection from synthetically blurred scenes," Image and Vision Computing, 2019.

https://github.com/aitorshuffle/synthblur

Self-supervised learning for image-to-image translation in the small data regime

Introduction

1

2	Self-Supervised Blur Detection from Synthetically Blurred Scenes	SynthBlur
3	Adversarial Networks for Spatial Context-Aware Spectral Image Reconstruction from RGB	RGB2HSI
4	A Probabilistic Model and Capturing Device for Remote Simultaneous Estimation of Spectral Emissivity and Temperature of Hot Emissive Materials	TES
5	MVMO: A Multi-Object Dataset for Wide Baseline Multi-View Semantic Segmentation	MVMO
6	Zero-Pair Semi-Supervised Cross-View Semantic Segmentation	ZPCVNet
7	Conclusions	

Heavily underconstrained (e.g. metamers), non-linear problem

Chapter	Small data	Technique	Prior knowledge/Physics	Synthetic
Ch.3 (RGB2HSI)	Auto labels	CNN	Color image formation	Input

Image formation

Images: R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed., Pearson, 2007.

M. S. Brown, "Understanding the In-Camera Image Processing Pipeline for Computer Vision," CVPR - Tutorial, 2016.

Image formation

Images: R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed., Pearson, 2007.

M. S. Brown, "Understanding the In-Camera Image Processing Pipeline for Computer Vision," CVPR - Tutorial, 2016.

Image formation

3-RGB2HSI

Images: R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed., Pearson, 2007.

M. S. Brown, "Understanding the In-Camera Image Processing Pipeline for Computer Vision," CVPR - Tutorial, 2016.
Image formation

Images: R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed., Pearson, 2007.

M. S. Brown, "Understanding the In-Camera Image Processing Pipeline for Computer Vision," CVPR - Tutorial, 2016.

Image formation

Images: R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed., Pearson, 2007.

M. S. Brown, "Understanding the In-Camera Image Processing Pipeline for Computer Vision," CVPR - Tutorial, 2016.

Image formation

3-RGB2HSI

Images: R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed., Pearson, 2007.

M. S. Brown, "Understanding the In-Camera Image Processing Pipeline for Computer Vision," CVPR - Tutorial, 2016.

Related work

Spectral reconstruction

- From RGB + extra help
 - Low-res HS image:
 - [Cao2011] X. Cao et al., "High resolution multispectral video capture with a hybrid camera system," CVPR 2011

• Multiplexed light:

- [Park2007] J. I. Park et al., "Multispectral Imaging Using Multiplexed Illumination,"
 ICCV 2007
- [Parmar2008] M. Parmar et al., "Spatio-spectral reconstruction of the multispectral datacube using sparse recovery," ICIP 2008
 - [Goel2015] M. Goel et al., "HyperCam: Hyperspectral Imaging for Ubiquitous Computing Applications," IJCPUC 2015

• No spatial info considered:

- [Nguyen2014] R. M. H. Nguyen et al., "Training-Based Spectral Reconstruction from a Single RGB Image," ECCV 2014
 - [Arad2016] B. Arad et al., "Sparse Recovery of Hyperspectral Signal from Natural RGB Images," ECCV 2016

Leveraging spatial context:

RGB2HS

å

[Robles- A. Robles-Kelly, "Single Image Spectral Reconstruction for Multimedia Kelly2015] Applications," ACM Multimedia, 2015.

```
[Galliani2017] S. Galliani et al., "Learned Spectral Super-Resolution," arXiv:1703.09470
[cs], 2017.
```

Related work

Spectral reconstruction

- From RGB + extra help
 - Low-res HS image:

[Cao2011] X. Cao et al., "High resolution multispectral video capture with a hybrid camera system," CVPR 2011

• Multiplexed light:

[Park2007] J. I. Park et al., "Multispectral Imaging Using Multiplexed Illumination,"
ICCV 2007

- [Parmar2008] M. Parmar et al., "Spatio-spectral reconstruction of the multispectral datacube using sparse recovery," ICIP 2008
 - [Goel2015] M. Goel et al., "HyperCam: Hyperspectral Imaging for Ubiquitous Computing Applications," IJCPUC 2015
- No spatial info considered:

[Nguyen2014] R. M. H. Nguyen et al., "Training-Based Spectral Reconstruction from a Single RGB Image," ECCV 2014

[Arad2016] B. Arad et al., "Sparse Recovery of Hyperspectral Signal from Natural RGB Images," ECCV 2016

Leveraging spatial context:

3-RGB2HSI

[Galliani2017] S. Galliani et al., "Learned Spectral Super-Resolution," arXiv:1703.09470 [cs], 2017.

Related work

Spectral reconstruction

- From RGB + extra help
 - Low-res HS image:

[Cao2011] X. Cao et al., "High resolution multispectral video capture with a hybrid camera system," CVPR 2011

• Multiplexed light:

[Park2007] J. I. Park et al., "Multispectral Imaging Using Multiplexed Illumination,"
ICCV 2007

- [Parmar2008] M. Parmar et al., "Spatio-spectral reconstruction of the multispectral datacube using sparse recovery," ICIP 2008
 - [Goel2015] M. Goel et al., "HyperCam: Hyperspectral Imaging for Ubiquitous Computing Applications," IJCPUC 2015

• No spatial info considered:

[Nguyen2014] R. M. H. Nguyen et al., "Training-Based Spectral Reconstruction from a Single RGB Image," ECCV 2014

[Arad2016] B. Arad et al., "Sparse Recovery of Hyperspectral Signal from Natural RGB Images," ECCV 2016

Leveraging spatial context:

RGB2HS

ų

The ICVL dataset

[Arad2016]

~200 images

Camera: Specim PS Kappa DX4 + rotary

Raw HSI: 1392×1300 pixels, 519 spectral bands [400-1,000nm] with $\Delta \lambda \approx 1,25nm$

Downsampled:

31 spectral channels [400nm-700nm] with $\Delta \lambda \approx 10nm$

Dataset preparation

From HyperSpectral to sRGB

Illuminant $I(\lambda)$

TA

Dataset preparation

Dataset preparation

Approach

Approach

Generative adversarial Networks (GANs)

[Goodfellow2014]

Generative adversarial Networks (GANs)

[Goodfellow2014]

Conditional GANs: pix2pix

[Isola 2017]

[Isola2017] P. Isola et al., "Image-To-Image Translation With Conditional Adversarial Networks," CVPR 2017. [Hesse2017] C. Hesse, "Image-to-Image Demo - Affine Layer," 2017, https://affinelayer.com/pixsrv/.

Conditional GANs: pix2pix

[Isola 2017]

3-RGB2HSI

[Isola2017] P. Isola et al., "Image-To-Image Translation With Conditional Adversarial Networks," CVPR 2017. [Hesse2017] C. Hesse, "Image-to-Image Demo - Affine Layer," 2017, https://affinelayer.com/pixsrv/.

[Isola2017] P. Isola et al., "Image-To-Image Translation With Conditional Adversarial Networks," CVPR 2017. [Hesse2017] C. Hesse, "Image-to-Image Demo - Affine Layer," 2017, https://affinelayer.com/pixsrv/.

Conditional GANs: pix2pix

[Isola 2017]

3-RGB2HSI

[Isola2017] P. Isola et al., "Image-To-Image Translation With Conditional Adversarial Networks," CVPR 2017. [Hesse2017] C. Hesse, "Image-to-Image Demo - Affine Layer," 2017, https://affinelayer.com/pixsrv/.

Adversarial spectral reconstruction networks

672256225622562256 **Architecture** G is a U-Net [Ronneberger2015] 3x256x256 192x128x128 64x128x128 384x64x64 128x64x64 768x32x32 256x32x32 1024x16x16 512x16x16 1024x8x8 512x8x8 1024x4x4 512x4x4 <u>512x2x2</u> 1024x2x2 512x1x1 Conv2D(k=3,s=2) + BatchNorm + LeakyReLU Conv2DTranspose(k=2,s=1) + Dropout(r=0.1) + Merge(Conv2D(k=1,s=1) + LeakyReLU

[Ronneberger2015] O. Ronneberger et al., "U-Net: Convolutional Networks for Biomedical Image Segmentation," MICCAI 2015

672256225622562256 **Architecture** G is a U-Net [Ronneberger2015] 3x256x256 192x128x128 64x128x128 384x64x64 128x64x64 768x32x32 256x32x32 1024x16x16 512x16x16 1024x8x8 512x8x8 1024x4x4 512x4x4 512x2x2 1024x2x2 512x1x1 Conv2D(k=3,s=2) + BatchNorm + LeakyReLU Conv2DTranspose(k=2,s=1) + Dropout(r=0.1) + Merge(Conv2D(k=1,s=1) + LeakyReLU

[Ronneberger2015] O. Ronneberger et al., "U-Net: Convolutional Networks for Biomedical Image Segmentation," MICCAI 2015

Architecture

D is a Patch-CNN

Focuses on high (spatial) freqs.

Experiments

Evaluation on ICVL

lation on ICVL	Per pixel, the spectru	across <u>im</u> Normalized by Accounts for l luminance san	Goodness of f coefficient y radiance (high is better ow nples	it Perceptual color difference
Method	RMSE	RMSERel	GFC	ΔE_{00}
[Arad2016] reported	2.633	0.0756	-	-
[Arad2016] optimized	2.184 ± 0.064	0.0872 ± 0.004	—	_
[Galliani2017] reported	1.980	0.0587	_	_
Ours	1.457 ± 0.040	0.0401 ± 0.0024	0.99921 ± 0.00012	2.044 ± 0.341
fold 0	1.452 ± 0.101	0.0383 ± 0.0024	0.99906 ± 0.00001	1.861 ± 0.324
fold 1	1.463 ± 0.022	0.0420 ± 0.0024	0.99936 ± 0.00023	2.228 ± 0.358

Experiments Evaluation on ICVL

Per pixel, the spectr	across um Normalized by Accounts for 1 luminance san	Goodness of f coefficient v radiance (high is better ow nples	it) Perceptu differenc	al color e
RMSE	RMSERel	GFC	ΔE_{00}	_
2.633	0.0756	-	-	Pixelwise
2.184 ± 0.064 -33	0.0872 ± 0.004 -54,	0% —	—	reconstruction
1.980	0.0587	_	_	_
1.457 ± 0.040	0.0401 ± 0.0024	0.99921 ± 0.00012	2.044 ± 0.341	_
1.452 ± 0.101	0.0383 ± 0.0024	0.99906 ± 0.00001	1.861 ± 0.324	
1.463 ± 0.022	0.0420 ± 0.0024	0.99936 ± 0.00023	2.228 ± 0.358	
	Per pixel, the spectr RMSE 2.633 2.184 ± 0.064 -33 1.980 1.457 ± 0.040 1.452 ± 0.101 1.463 ± 0.022	Per pixel, across the spectrumNormalized by Accounts for 1 luminance sanRMSERMSERel2.633 0.0756 2.184 ± 0.064 -33.2% 0.0872 ± 0.004 -54, 1.980 1.457 \pm 0.040 0.0401 ± 0.0024 1.452 ± 0.101 0.0383 ± 0.0024 1.463 ± 0.022 0.0420 ± 0.0024	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Goodness of fit coefficient Per pixel, across the spectrum Normalized by radiance Accounts for low Imminance samples RMSE RMSERel GFC ΔE_{00} 2.633 0.0756 - - 2.184 ± 0.064 -33.2% 0.0756 - - 1.980 0.0587 - - 1.457 ± 0.040 0.0401 ± 0.0024 0.99921 ± 0.00012 2.044 ± 0.341 1.452 ± 0.101 0.0383 ± 0.0024 0.99936 ± 0.00001 1.861 ± 0.324 1.463 ± 0.022 0.0420 ± 0.0024 0.99936 ± 0.00023 2.228 ± 0.358

Experiments Evaluation on ICVL

uation on ICVL	Per pixel, the spectr	across <u>um</u> Normalized by Accounts for lo luminance sam	Goodness of f coefficient radiance (high is better ww ples	fit r <u>)</u> Perceptua differenc	al color e
Method	RMSE	RMSERel	GFC	ΔE_{00}	_
[Arad2016] reported	2.633	0.0756	-	-	Pixelwise
[Arad2016] optimized	2.184 ± 0.064 -33	0.0872 ± 0.004 -54,0	% —	_	reconstruction
[Galliani2017] reported	1.980	0.0587	_	_	CNN
Ours	1.457 ± 0.040	0.0401 ± 0.0024	0.99921 ± 0.00012	2.044 ± 0.341	-
fold 0	1.452 ± 0.101	0.0383 ± 0.0024	0.99906 ± 0.00001	1.861 ± 0.324	
fold 1	1.463 ± 0.022	0.0420 ± 0.0024	0.99936 ± 0.00023	2.228 ± 0.358	

Experiments Evaluation on ICVL

lation on ICVL	Per pixel, the spectr	, across rum Normalized by Accounts for l luminance san	Goodness of f coefficient y radiance (high is better ow nples	fit <u>)</u> Perceptua differenc	al color e
Method	RMSE	RMSERel	GFC	ΔE_{00}	-
[Arad2016] reported	2.633	0.0756	-	-	Pixelwise
[Arad2016] optimized	2.184 ± 0.064 -3	3.2% 0.0872 ± 0.004 -54,	0% —	_	reconstruction
[Galliani2017] reported	1.980	0.0587	_	_	CNN
Ours	1.457 ± 0.040	0.0401 ± 0.0024	0.99921 ± 0.00012	2.044 ± 0.341	-
fold 0	1.452 ± 0.101	0.0383 ± 0.0024	0.99906 ± 0.00001	1.861 ± 0.324	
fold 1	1.463 ± 0.022	0.0420 ± 0.0024	0.99936 ± 0.00023	2.228 ± 0.358	

63

Adversarial Networks for Spatial Context-Aware Spectral Image Reconstruction from RGB

Does spatial information really help?

Full G net

Does spatial information really help?

G pruned to 1 branch. Receptive field: 1x1

3x256x256

37,256,256 67,256,256,256,256

3-RGB2HSI

Does spatial information really help?

G pruned to 2 branches. Receptive field: 3x3	6772567256 6772567256	6,7 256
3x256x256		
64x128x128	192x128x128	
	384x64x64	
		70

3-RGB2HSI

Does spatial information really help?

G pruned to 3 branches. Receptive field: 7x7	67 ₄₂₅₆ 4256 4256
<u>3x256x256</u>	
64x128x128	192x128x128
128x64x64	384x64x64

3-RGB2HSI

Does spatial information really help?

G pruned to 4 branches. Receptive field: 15x15	37,256, 67,256,256,256,256 67,256,256,256
3x256x256	
	192x128x128
64x128x128	384x64x64
256x32x32	768x32x32
3-RGB2HSI

Does spatial information really help?

G pruneo	d to 5	branc	ches. Receptive field: 31x31	677256 6772567756 6772567756	4256
3x256x256	6				
64v128	v129			192x128x128	
04x120	128x64	x64		384x64x64	
		256x32	x32	768x32x32	
	•	•	512x16x16		73

3-RGB2HSI

Does spatial information really help?

G pruned	to 6 branches. Receptive field: 63x63	31,256,256 67,256,256,256,256 7,256,256
3x256x256		→
		192x128x128
64x128x	28 384 28x64x64	→ ↓x64x64
	256x32x32 1024x16x16	
	512x16x16 512x8x8 512x8x8	74

Does spatial information really help?

G pruned to 7 branches. Receptive field: 127x127

3-RGB2HSI

Does spatial information really help?

G pruned to 8 branches. Receptive field: 255x255

3-RGB2HSI

Does spatial information really help?

G is a U-Net Full. Receptive field: 256x256

3-RGB2HSI

Does spatial information really help?

3-RGB2HSI

Does spatial information really help?

3-RGB2HSI

Does spatial information really help?

Takeaways

- CNNs/GANs applied to spectral image reconstruction for the 1st time
- State of the art over ICVL dataset
- Spatial context information does help*

- Publication
 A. Alvarez-Gila, J. van de Weijer, and E. Garrote, "Adversarial Networks for Spatial Context-Aware Spectral Image Reconstruction from RGB," ICCVW 2017
- Publication
 B. Arad, O. Ben-Shahar, R. Timofte, L. Van Gool, L. Zhang, M.-H. Yang, Z. Xiong, C. Chen, Z. Shi, D. Liu, F. Wu, C. Lanaras, S. Galliani, K. Schindler, T. Stiebel, S. Koppers, P. Seltsam, R. Zhou, M. El Helou, F. Lahoud, M. Shahpaski, K. Zheng, L. Gao, B. Zhang, X. Cui, H. Yu, Y. B. Can, A. Alvarez-Gila, J. van de Weijer, E. Garrote, A. Galdran, M. Sharma, S. Koundinya, A. Upadhyay, R. Manekar, R. Mukhopadhyay, H. Sharma, S. Chaudhury, K. Nagasubramanian, S. Ghosal, A. K. Singh, A. Singh, B. Ganapathysubramanian, and S. Sarkar, "NTIRE 2018 Challenge on Spectral Reconstruction from RGB Images," CVPRW 2018

Self-supervised learning for image-to-image translation in the small data regime

- Introduction
- 2 Self-Supervised Blur Detection from Synthetically Blurred Scenes
- 3 Adversarial Networks for Spatial Context-Aware Spectral Image Reconstruction from RGB

SynthBlur

RGB2HSI

4 A Probabilistic Model and Capturing Device for Remote Simultaneous Estimation of Spectral Emissivity and Temperature of Hot Emissive Materials

5	MVMO: A Multi-Object Dataset for Wide Baseline Multi-View Semantic Segmentation	MVMO
6	Zero-Pair Semi-Supervised Cross-View Semantic Segmentation	ZPCVNet

Context

Steelmaking with an Electric Arc Furnace

Context

Steelmaking with an Electric Arc Furnace

Holy Grail of EAF-based steelmaking:

Rem	ote, onli	ine estin	nation of	f slag co	mpositio
	SiO2 (%)	FeO (%)	Al2O3 (%)	CaO (%)	MgO (%)
e.g.	25.24	0.23	6.15	60.02	3.49
					111

State of the affairs:

e.

- Manual temperature mesasurement through thermocouple ٠
- Offline chemical analysis of cooled (solid) preprocessed slag sample (XRF spectrometry) •

• Holy Grail of EAF-based steelmaking:

Remote, online estimation of slag composition

temperature and spectral emissivity

i.e. Temperature-Emissivity Separation (TES)

• Holy Grail of EAF-based steelmaking:

• Holy Grail of EAF-based steelmaking:

• Holy Grail of EAF-based steelmaking:

- Heavily underconstrained problem
- Previous methods pose strong assumptions:
 - Uniform spectral emissivity [Rego-Barcena2008]
 - Known temperature [Lee2013]

4-TES

• Specific temperature/emissivity ranges (e.g. remote sensing) [Barducci2014]

Chapter	Small data	Technique	Prior knowledge/Physics	Synthetic
Ch.4 (TES)	No labels	PP	Radiative Transfer	-

Design of the device

4-TES

Acquisition case

Opto-mecanical system

Tripod mount

Design of the device

Prototype:

4-TES

Acquisition case

Opto-mecanical system

Tripod mount

Design of the device

Opto-mecanical system

System calibration

Offline calibration. Laboratory blackbody (BB) furnace [500-1500°C]

• Corrects sensor non-linearities. Maps the collected counts by the spectrometer at each λ_i into the theoretical blackbody radiance at T_j .

Offline calibration setup

Field calibration. Portable calibration lamp

• Accounts for daily mechanical variations (up to 15%)

Calibration lamp [500-900nm], 1500K

Model formulation

Goal: TES - simultaneous estimation of the temperature T_{bb} and spectral emissivity $\varepsilon(\lambda, T_{bb})$ of the observed hot sample

Model formulation

Goal: TES - simultaneous estimation of the temperature T_{bb} and spectral emissivity $\varepsilon(\lambda, T_{bb})$ of the observed hot sample

Selective radiator (emissive sample)

Model formulation

Goal: TES - simultaneous estimation of the temperature T_{bb} and spectral emissivity $\varepsilon(\lambda, T_{bb})$ of the observed hot sample

Selective radiator (emissive sample)

Model formulation

Goal: TES - simultaneous estimation of the temperature T_{bb} and spectral emissivity $\varepsilon(\lambda, T_{bb})$ of the observed hot sample

Selective radiator (emissive sample)

Observed radiance at entry of capturing device

4-TES

Model formulation

Goal: TES - simultaneous estimation of the temperature T_{bb} and spectral emissivity $\varepsilon(\lambda, T_{bb})$ of the observed hot sample

Observed radiance at entry of capturing device

97

Model formulation

Goal: TES - simultaneous estimation of the temperature T_{bb} and spectral emissivity $\varepsilon(\lambda, T_{bb})$ of the observed hot sample

Selective radiator (emissive sample)

Observed radiance at entry of capturing device

98

4-TES

Model formulation: Ideal blackbody radiator $L_{bb}(\lambda, T_{bb})$

Planck's law of black-body radiation: Spectral radiance of a BB at temperature T_{bb} :

Model formulation: Ideal blackbody radiator $L_{bb}(\lambda, T_{bb})$

Planck's law of black-body radiation: Spectral radiance of a BB at temperature T_{bb} :

Model formulation: Ideal blackbody radiator $L_{bb}(\lambda, T_{bb})$

Planck's law of black-body radiation: Spectral radiance of a BB at temperature T_{bb} :

Wavelength (µm)

Model formulation: Spectral emissivity $\varepsilon(\lambda, T_{bb})$ of the radiative source

- Modeled as M=10 probabilistic variables ε_k with $k = 1 \dots M$
- M associated fuzzy sets with triangular membership
- Spectral emissivity at any λ_i as weighted value over ε_k

List of stochastic variables:

- T_{bb}
- $\varepsilon_k, k = 1...M$

Model formulation: Atmospheric transmitance $T_{atm}(\lambda)$

$$\mathcal{T}_{atm}(\lambda) = e^{-d \cdot \gamma_{atm}} = e^{-d \cdot \sum_{a} - x_a \cdot \gamma_a} = e^{-d \cdot (x_{CO_2} \cdot \gamma_{CO_2} + x_{H_2O} \cdot \gamma_{H_2O})}$$

List of stochastic variables:

- T_{bb}
- $\varepsilon_k, k = 1...M$
- x_{CO_2}, x_{H_2O}

Model formulation: Atmospheric transmitance $T_{atm}(\lambda)$

List of stochastic variables:

- T_{bb}
- $\varepsilon_k, k = 1...M$
- x_{CO_2}, x_{H_2O}

Model formulation: Atmospheric transmitance $T_{atm}(\lambda)$

 $T_{atm}(\lambda)$, d = 1.5m, T = 27°C. Typical concentrations.

4-TES

Model formulation: Final

Variations over precomputed K_s .

$$L_{expected}(\lambda) = \mathcal{T}_{OS}^{-1} \left[\underbrace{\mathcal{T}_{OS} \left(k_s \cdot L_{bb}(\lambda, T_{bb}) \cdot \varepsilon(\lambda, T_{bb}) \cdot e^{-\gamma_{atm}(\lambda) \cdot d} \right)}_{C(\lambda)} \right]$$

Model formulation: Final

Variations over precomputed K_s .

$$L_{expected}(\lambda) = \mathcal{T}_{OS}^{-1} \left[\underbrace{\mathcal{T}_{OS} \left(k_s \cdot L_{bb}(\lambda, T_{bb}) \cdot \varepsilon(\lambda, T_{bb}) \cdot e^{-\gamma_{atm}(\lambda) \cdot d} \right)}_{C(\lambda)} \right]$$

List of stochastic variables:

• T_{bb}

4-TES

- x_{CO_2}, x_{H_2O}
- $\varepsilon_k, k = 1...M$
- $k_s, s = 1, 2, 3$

$$\theta = \{T_{bb}, \sigma, x_{CO_2}, x_{H_2O}, k_1, k_2, k_3, \varepsilon_k\} \ \forall k \in [1 \dots M].$$

We will solve this through Bayesian inference (Probabilistic Programming with PyMC3)

Solving the model through Bayesian probabilistic inference

$$P(\theta|x) = \frac{P(x|\theta)P(\theta)}{P(x)}$$

Bayes' formula
Solving the model through Bayesian probabilistic inference

$$P(\theta|x) = \frac{P(x|\theta)P(\theta)}{P(x)}$$

Bayes' formula

 $P(\theta|x)$ [Posterior probability distribution] Our quantity of interest:

 $P(\theta|x) = P(T_{bb}, \sigma, x_{CO_2}, x_{H_2O}, k_1, k_2, k_3, \varepsilon_1, \dots, \varepsilon_M | L_{obs}(\lambda))$ What are the values of these parameters that best explain the measured radiance data $(L_{obs}(\lambda))$?

Solving the model through Bayesian probabilistic inference

$$P(\theta) \text{ [Prior]}$$
Incorporates our prior knowledge over the parameter values.
$$P(\theta|x) = \frac{P(x|\theta)P(\theta)}{P(x)}$$
Bayes' formula

 $P(\theta|x)$ [Posterior probability distribution] Our quantity of interest:

 $P(\theta|x) = P(T_{bb}, \sigma, x_{CO_2}, x_{H_2O}, k_1, k_2, k_3, \varepsilon_1, \dots, \varepsilon_M | L_{obs}(\lambda))$ What are the values of these parameters that best explain the measured radiance data $(L_{obs}(\lambda))$?

Solving the model through Bayesian probabilistic inference

 $P(\theta|x)$ [Posterior probability distribution] Our quantity of interest:

 $P(\theta|x) = P(T_{bb}, \sigma, x_{CO_2}, x_{H_2O}, k_1, k_2, k_3, \varepsilon_1, \dots, \varepsilon_M | L_{obs}(\lambda))$ What are the values of these parameters that best explain the measured radiance data $(L_{obs}(\lambda))$?

Solving the model through Bayesian probabilistic inference

Simultaneous estimation of every parameter with a measure of its **uncertainty**

We only need likelihood and priors!

$$L_{expected}(\lambda) = \mathcal{T}_{OS}^{-1} \left[\mathcal{T}_{OS} \left(k_s \cdot L_{bb}(\lambda, T_{bb}) \cdot \varepsilon(\lambda, T_{bb}) \cdot e^{-\gamma_{atm}(\lambda) \cdot d} \right) \right]$$

Parameter	Name	Prior distribution
T_{bb}	Sample temperature	$\sim \mathcal{U}(min = 400^{\circ}C, max = 1500^{\circ}C)$
x_{CO_2}	Molar concentration of CO_2	$\sim \mathcal{N}(\mu = 450 ppm, \sigma^2 = 50^2)$
x_{H_2O}	Molar concentration of H_2O	$\sim \mathcal{N}(\mu = 36000 ppm, \sigma^2 = 500^2)$
ε_k	Spectral emissivity anchor value	$\sim \mathcal{U}(min = 0.0, max = 1.0)$
k_s	Spectrometer-wise misalignment proportionality constant	$\sim \mathcal{N}(\mu = [\text{closed form } K_s], \sigma^2 = 0.001^2)$
L_{obs}	Observed radiance	$\sim \mathcal{N}(\mu = [L_{expected}(\lambda)], \sigma^2)$
σ	Standard deviation of the \mathcal{N} modeling L_{obs}	$\sim HalfCauchy(\beta = 10)$

$$L_{expected}(\lambda) = \mathcal{T}_{OS}^{-1} \left[\mathcal{T}_{OS} \left(k_s \cdot L_{bb}(\lambda, T_{bb}) \cdot \varepsilon(\lambda, T_{bb}) \cdot e^{-\gamma_{atm}(\lambda) \cdot d} \right) \right]$$

Parameter	Name	Prior distribution
T_{bb}	Sample temperature	$\sim \mathcal{U}(min = 400^{\circ}C, max = 1500^{\circ}C)$ $L_{bb}(\lambda, T_{bb})$
x_{CO_2}	Molar concentration of CO_2	$\sim \mathcal{N}(\mu = 450 ppm, \sigma^2 = 50^2)$
x_{H_2O}	Molar concentration of H_2O	$\sim \mathcal{N}(\mu = 36000 ppm, \sigma^2 = 500^2)$
ε_k	Spectral emissivity anchor value	$\sim \mathcal{U}(min = 0.0, max = 1.0)$
k_s	Spectrometer-wise misalignment proportionality constant	$\sim \mathcal{N}(\mu = [\text{closed form } K_s], \sigma^2 = 0.001^2)$
L_{obs}	Observed radiance	$\sim \mathcal{N}(\mu = [L_{expected}(\lambda)], \sigma^2)$
σ	Standard deviation of the \mathcal{N} modeling L_{obs}	$\sim HalfCauchy(\beta = 10)$

$$L_{expected}(\lambda) = \mathcal{T}_{OS}^{-1} \left[\mathcal{T}_{OS} \left(k_s \cdot L_{bb}(\lambda, T_{bb}) \cdot \varepsilon(\lambda, T_{bb}) \cdot e^{-\gamma_{atm}(\lambda) \cdot d} \right) \right]$$

Parameter	Name	Prior distribution	
T_{bb}	Sample temperature	$\sim \mathcal{U}(min = 400^{\circ}C, max = 1500^{\circ}C)$	$^{-}L_{bb}(\lambda,T_{bb})$
x_{CO_2}	Molar concentration of CO_2	$\sim \mathcal{N}\left(\mu = 450 ppm, \sigma^2 = 50^2\right)$	T (λ)
x_{H_2O}	Molar concentration of H_2O	$\sim \mathcal{N}(\mu = 36000 ppm, \sigma^2 = 500^2)$	
ε_k	Spectral emissivity anchor value	$\sim \mathcal{U}(min = 0.0, max = 1.0)$	
k_s	Spectrometer-wise misalignment proportionality constant	$\sim \mathcal{N}(\mu = [\text{closed form } K_s], \sigma^2 = 0.001^2)$	
L_{obs}	Observed radiance	$\sim \mathcal{N}(\mu = [L_{expected}(\lambda)], \sigma^2)$	
σ	Standard deviation of the \mathcal{N} modeling L_{obs}	$\sim HalfCauchy(\beta = 10)$	_

$$L_{expected}(\lambda) = \mathcal{T}_{OS}^{-1} \left[\mathcal{T}_{OS} \left(k_s \cdot L_{bb}(\lambda, T_{bb}) \cdot \varepsilon(\lambda, T_{bb}) \cdot e^{-\gamma_{atm}(\lambda) \cdot d} \right) \right]$$

Parameter	Name	Prior distribution	
T_{bb}	Sample temperature	$\sim \mathcal{U}(min = 400^{\circ}C, max = 1500^{\circ}C)$	$L_{bb}(\lambda, T_{bb})$
x_{CO_2}	Molar concentration of CO_2	$\sim \mathcal{N}(\mu = 450 ppm, \sigma^2 = 50^2)$	T , (λ)
x_{H_2O}	Molar concentration of H_2O	$\sim \mathcal{N}(\mu = 36000 ppm, \sigma^2 = 500^2)$	
ε_k	Spectral emissivity anchor value	$\sim \mathcal{U}(min = 0.0, max = 1.0)$	$\varepsilon(\lambda, T_{bb})$
k_s	Spectrometer-wise misalignment proportionality constant	$\sim \mathcal{N}(\mu = [\text{closed form } K_s], \sigma^2 = 0.001^2)$	
L_{obs}	Observed radiance	$\sim \mathcal{N}(\mu = [L_{expected}(\lambda)], \sigma^2)$	
σ	Standard deviation of the \mathcal{N} modeling L_{obs}	$\sim HalfCauchy(\beta = 10)$	_

$$L_{expected}(\lambda) = \mathcal{T}_{OS}^{-1} \left[\mathcal{T}_{OS} \left(k_s \cdot L_{bb}(\lambda, T_{bb}) \cdot \varepsilon(\lambda, T_{bb}) \cdot e^{-\gamma_{atm}(\lambda) \cdot d} \right) \right]$$

Parameter	Name	Prior distribution	
T_{bb}	Sample temperature	$\sim \mathcal{U}(min = 400^{\circ}C, max = 1500^{\circ}C)$	$^{-}L_{bb}(\lambda,T_{bb})$
x_{CO_2}	Molar concentration of CO_2	$\sim \mathcal{N}(\mu = 450 ppm, \sigma^2 = 50^2)$	T (λ)
x_{H_2O}	Molar concentration of H_2O	$\sim \mathcal{N}(\mu = 36000 ppm, \sigma^2 = 500^2)$	
ε_k	Spectral emissivity anchor value	$\sim \mathcal{U}(min = 0.0, max = 1.0)$	$\varepsilon(\lambda, T_{bb})$
k_s	Spectrometer-wise misalignment proportionality constant	~ $\mathcal{N}(\mu = [\text{closed form } K_s], \sigma^2 = 0.001^2)$	T_{OS}
L_{obs}	Observed radiance	$\sim \mathcal{N}(\mu = [L_{expected}(\lambda)], \sigma^2)$	
σ	Standard deviation of the \mathcal{N} modeling L_{obs}	$\sim HalfCauchy(\beta = 10)$	

$$L_{expected}(\lambda) = \mathcal{T}_{OS}^{-1} \left[\mathcal{T}_{OS} \left(k_s \cdot L_{bb}(\lambda, T_{bb}) \cdot \varepsilon(\lambda, T_{bb}) \cdot e^{-\gamma_{atm}(\lambda) \cdot d} \right) \right]$$

Parameter	Name	Prior distribution	
T_{bb}	Sample temperature	$\sim \mathcal{U}(min = 400^{\circ}C, max = 1500^{\circ}C)$	$L_{bb}(\lambda, T_{bb})$
x_{CO_2}	Molar concentration of CO_2	$\sim \mathcal{N}(\mu = 450 ppm, \sigma^2 = 50^2)$	T (2)
x_{H_2O}	Molar concentration of H_2O	$\sim \mathcal{N}(\mu = 36000 ppm, \sigma^2 = 500^2)$	
ε_k	Spectral emissivity anchor value	$\sim \mathcal{U}(min = 0.0, max = 1.0)$	$\varepsilon(\lambda, T_{bb})$
k_s	Spectrometer-wise misalignment proportionality constant	$\sim \mathcal{N}(\mu = [\text{closed form } K_s], \sigma^2 = 0.001^2)$	T_{OS}
L_{obs}	Observed radiance	$\sim \mathcal{N}(\mu = [L_{expected}(\lambda)], \sigma^2)$	
σ	Standard deviation of the \mathcal{N} modeling L_{obs}	$\sim HalfCauchy(\beta = 10)$	

Solving the model through Bayesian probabilistic inference

$$L_{expected}(\lambda) = \mathcal{T}_{OS}^{-1} \left[\mathcal{T}_{OS} \left(k_s \cdot L_{bb}(\lambda, T_{bb}) \cdot \varepsilon(\lambda, T_{bb}) \cdot e^{-\gamma_{atm}(\lambda) \cdot d} \right) \right]$$

Parameter	Name	Prior distribution	
T_{bb}	Sample temperature	$\sim \mathcal{U}(min = 400^{\circ}C, max = 1500^{\circ}C)$	$L_{bb}(\lambda, T_{bb})$
x_{CO_2}	Molar concentration of CO_2	$\sim \mathcal{N}(\mu = 450 ppm, \sigma^2 = 50^2)$	T , (λ)
x_{H_2O}	Molar concentration of H_2O	$\sim \mathcal{N}(\mu = 36000 ppm, \sigma^2 = 500^2)$	$\operatorname{Iatm}(n)$
ε_k	Spectral emissivity anchor value	$\sim \mathcal{U}(min = 0.0, max = 1.0)$	$\varepsilon(\lambda, T_{bb})$
k_s	Spectrometer-wise misalignment proportionality constant	$\sim \mathcal{N}(\mu = [\text{closed form } K_s], \sigma^2 = 0.001^2)$	T_{OS}
L_{obs}	Observed radiance	$\sim \mathcal{N}(\mu = [L_{expected}(\lambda)], \sigma^2)$	
σ	Standard deviation of the \mathcal{N} modeling L_{obs}	$\sim HalfCauchy(\beta = 10)$	

Our *likelihood* term: we model the *error between the observed and expected radiances* as a **normal** distribution

Setup

Testing is difficult!

Two solid samples with well-characterized emissivities:

- Alumina (Al_2O_3) ,
- Boron nitride (*BN*)

Laboratory equipment (HAIRL emissometer). Range: 100-860°C

Our device: remote Temperature, Emissivity. Range: 600-1100°C

Posterior probabilities

Alumina

Boron nitride

4-TES

4-TES

Results (radiances, spectral emissivities, temperatures)

Results (spectral emissivity)

4-TES

4-TES

Laboratory [-] vs ours [--]

Takeaways

- **Device** and **model** yielding simultaneous remote estimates for **temperature** and **spectral emissivity** of hot radiative samples in **near-steel factory conditions**.
- MCMC-based **full-probability estimates** for various process variables: T_{bb} , $(\varepsilon_1, \dots, \varepsilon_M)$, (x_{CO_2}, x_{H_2O})
- Validated for two solid samples [600-850°C]
- Necessary first step for remote online estimation of slag composition on EAF

- PublicationA. Picon*, A. Alvarez-Gila*, J. A. Arteche, G. A. López, and A. Vicente, "A Probabilistic Model and Capturing Device for Remote
Simultaneous Estimation of Spectral Emissivity and Temperature of Hot Emissive Materials," IEEE Access, 2021.
*Equal contribution
 - **Patent** A. Picon, **A. Alvarez-Gila,** A. Vicente, and Arteche, Jose Antonio, *"System and method for determining the emitting temperature and emissivity in a wavelength range of metallurgical products,"* PCT/IB2019/061335, filed December 24, 2019

Self-supervised learning for image-to-image translation in the small data regime

1		nt	ro	du	ctic	n
---	--	----	----	----	------	---

2	Self-Supervised Blur Detection from Synthetically Blurred Scenes	SynthBlur
3	Adversarial Networks for Spatial Context-Aware Spectral Image Reconstruction from RGB	RGB2HSI
4	A Probabilistic Model and Capturing Device for Remote Simultaneous Estimation of Spectral Emissivity and Temperature of Hot Emissive Materials	TES
5	MVMO: A Multi-Object Dataset for Wide Baseline Multi-View Semantic Segmentation	ΜνΜο
6	Zero-Pair Semi-Supervised Cross-View Semantic Segmentation	ZPCVNet
7	Conclusions	

Motivation

Performance of monocular 2D semantic segmentation systems in densely populated scenes is hindered by:

- Self/inter-occlusions
- Small apparent sized objects
- Ambiguous views + fine grained categories
- Ambiguities induced by appearance variation across views (e.g. specularities)

Hypothesis:

"Data driven dense prediction models could benefit from complementary information in multi-view setups"

Motivation

Performance of monocular 2D semantic segmentation systems in densely populated scenes is hindered by:

- Self/inter-occlusions
- Small apparent sized objects
- Ambiguous views + fine grained categories
- Ambiguities induced by appearance variation across views (e.g. specularities)

Hypothesis:

"Data driven dense prediction models could benefit from complementary information in multi-view setups"

Motivation

Performance of monocular 2D semantic segmentation systems in densely populated scenes is hindered by:

- Self/inter-occlusions
- Small apparent sized objects
- Ambiguous views + fine grained categories
- Ambiguities induced by appearance variation across views (e.g. specularities)

Hypothesis:

"Data driven dense prediction models could benefit from complementary information in multi-view setups"

Motivation

Performance of monocular 2D semantic segmentation systems in densely populated scenes is hindered by:

- Self/inter-occlusions
- Small apparent sized objects
- Ambiguous views + fine grained categories
- Ambiguities induced by appearance variation across views (e.g. specularities)

Hypothesis:

"Data driven dense prediction models could benefit from complementary information in multi-view setups"

Motivation

Performance of monocular 2D semantic segmentation systems in densely populated scenes is hindered by:

- Self/inter-occlusions
- Small apparent sized objects
- Ambiguous views + fine grained categories
- Ambiguities induced by appearance variation across views (e.g. specularities)

Hypothesis:

"Data driven dense prediction models could benefit from complementary information in multi-view setups"

Motivation

Performance of monocular 2D semantic segmentation systems in densely populated scenes is hindered by:

- Self/inter-occlusions
- Small apparent sized objects
- Ambiguous views + fine grained categories
- Ambiguities induced by appearance variation across views (e.g. specularities)

Hypothesis:

"Data driven dense prediction models could benefit from complementary information in multi-view setups"

Related work

Dataset	Wide Baseline	Object Density	Representation	Photorealism	# Scenes	# Views	# Classes
Human3.6M	Yes	Low (1)	2D images	Real	900,000 in 165 sequences	4	24
3Dpeople	Yes	Low (1)	$3DM \rightarrow 2D$	S: High B: Low	616,000 in 5,600 sequences	4	8(clothes)/14(body)
SYNTHIA	No	N/A	$3DM \rightarrow 2D$	Low	51,000 in 51 sequences	8	13
ScanNet	*	Low	$2D \rightarrow 3DS$	High	1.5k	*	40
House3D	*	Low	3DVE	Low	45.6k	*	80
Gibson	*	Low	3DVE	High (IBR/PCR)	1.4k	*	40
CARLA	*	*	3DVE	Mid-High (RT)	*	*	12

★ Needs to be placed/configured/generated by user; images are not readily available.

Related work

Dataset	Wide Baseline	Object Density	Representation	Photorealism	# Scenes	# Views	# Classes
Human3.6M 3Dpeople	Yes Yes	Low (1)	2D images 3DM→2D	Real S: High B: Low	900,000 in 165 sequences 616,000 in 5,600 sequences	4	24 8(clothes)/14(body)
SYNTHIA	No	N/A	3DM→2D	Low	51,000 in 51 sequences	8	13
ScanNet House3D Gibson	*	Low Low	2D→3DS 3DVE 3DVE	High Low	1.5k 45.6k	*	40 80 40
CARLA	*	±	3DVE 3DVE	Mid-High (RT)	1.4K ★	*	40 12
)				

★ Needs to be placed/configured/generated by user; images are not readily available.

Related work

Dataset	Wide Baseline	Object Density	Representation	Photorealism	# Scenes	# Views	# Classes
Human3.6M	Yes	Low (1)	2D images	Real	900,000 in 165 sequences	4	24
3Dpeople	Yes	Low (1)	$3DM \rightarrow 2D$	S: High B: Low	616,000 in 5,600 sequences	4	8(clothes)/14(body)
SYNTHIA	No	N/A	3DM→2D	Low	51,000 in 51 sequences	8	13
ScanNet	*	Low	2D→3DS	High	1.5k	*	40
House3D	*	Low	3DVE	Low	45.6k	*	80
Gibson	*	Low	3DVE	High (IBR/PCR)	1.4k	*	40
CARLA	*	*	3DVE	Mid-High (RT)	*	*	12
MVMO (ours)	Yes	High (15-20)	3DM→2D	High (PT, UOM)	116k (uncorrelated)	25	11
					Needs to be place	d/configu	red/generated by user

 Needs to be placed/configured/generated by user; images are not readily available.

MVMO

The Multi-View, Multi-Object Dataset

100k train + 8k val + 8k test scenes

15-20 objects/scene:

- Sampled from ModelNet10
- 10 annotated categories
- Diversified appearance/BSDF

25 camera locations at the upper hemisphere at 4 levels

Wide-baselines \rightarrow large disparities

High density of objects \rightarrow Multiple occlusions

MVMO

The Multi-View, Multi-Object Dataset

100k train + 8k val + 8k test scenes

15-20 objects/scene:

- Sampled from ModelNet10
- 10 annotated categories
- Diversified appearance/BSDF

25 camera locations at the upper hemisphere at 4 levels

300000

200000

100000 -

#Objects per scene

150000

100000 -

Wide-baselines \rightarrow large disparities

High density of objects \rightarrow Multiple occlusions

Goal: boost research in [wide baseline]...

- (i) multi-view semantic segmentation
- (ii) **cross-view semantic transfer** from single view labels.

Scene samples

OWAW-S

L2

L0

Scene samples

Scene samples

Experimental baselines

Setup

5 cameras at 3 different levels (L0, L2, L3)

Imagenet pretrained U-Net architecture

Experimental baselines

Experiment 1: cross view semantic transfer via direct testing

Given a model, $f_{v_r \to ss_r}$, trained on (v_r, ss_r) pairs, we want to feed it with inputs from view v_t and obtain ss_t segmentation results referenced to v_t (ss_t).

Subset	test $(v_t) \setminus \text{train}(v_r)$	cam0	cam8	cam12	cam13	cam22
Other objs.	L0.cam0	71.12	29.09	29.61	14.28	14.88
	L2.cam8	24.63	70.21	70.16	28.14	28.54
	L2.cam12	25.14	69.09	70.05	27.73	28.29
	L3.cam13	12.18	31.26	31.46	59.18	58.72
	L3.cam22	12.11	30.10	30.59	58.39	59.41
Same objs.	L0.cam0	80.55	29.92	29.69	14.00	14.51
	L2.cam8	27.11	77.90	77.71	27.24	27.46
	L2.cam12	28.01	76.87	77 .9 7	26.94	27.52
	L3.cam13	12.90	32.16	32.29	65.87	65.69
	L3.cam22	12.76	31.00	31.68	64.84	66.09
Experiment 1: cross view semantic transfer via direct testing

Subset	test $(v_t) \setminus \text{train}(v_r)$	cam0	cam8	cam12	cam13	cam22	
	L0.cam0	71.12	29.09	29.61	14.28	14.88	
Other	L2.cam8	24.63	70.21	79.16	28.14	28.54	
other	L2.cam12	25.14	69.09	70.05	27.73	28.29	
objs.	L3.cam13	12.18	31.26	31.46	59.18	58.72	
	L3.cam22	12.11	30.10	30.59	58.39	59.41	
	L0.cam0	80.55	29.92	29.69	14.00	14.51	Fully-sup monocular
Sama	L2.cam8	27.11	77.90	77.71	27.24	27.46	i ung sup monoculu
same	L2.cam12	28.01	76.87	77.97	26.94	27.52	
objs.	L3.cam13	12.90	32.16	32.29	65.87	65.69	
	L3.cam22	12.76	31.00	31.68	64.84	66.09	

Experiment 1: cross view semantic transfer via direct testing

Given a model, $f_{v_r \to ss_r}$, trained on (v_r, ss_r) pairs, we want to feed it with inputs from view v_t and obtain ss_t segmentation results referenced to v_t (ss_t).

Subset	test $(v_t) \setminus \text{train}(v_r)$	cam0	cam8	cam12	cam13	cam22
	L0.cam0	71.12	29.09	29.61	14.28	14.88
Othan	L2.cam8	24.63	70.21	70.16	28.14	28.54
other	L2.cam12	25.14	69.09	70.05	27.73	28.29
objs.	L3.cam13	12.18	31.26	31.46	59.18	58.72
	L3.cam22	12.11	30.10	30.59	58.39	59.4 1
	L0.cam0	80.55	29.92	29.69	14.00	14.51
Sama	L2.cam8	27.11	77.90	77.71	27.24	27.46
same	L2.cam12	28.01	76.87	77.97	26.94	27.52
objs.	L3.cam13	12.90	32.16	32.29	65.87	65.69
	L3.cam22	12.76	31.00	31.68	64.84	66.09

Good generalization to unseen objects

Experiment 1: cross view semantic transfer via direct testing

Subset	test $(v_t) \setminus \text{train}(v_r)$	cam0	cam8	cam12	cam13	cam22	Good generalization
	L0.cam0	71.12	29.09	29.61	14.28	14.88	to unseen objects
Othan	L2.cam8	24.63	70.21	70.16	28.14	28.54	L2↔L2
other	L2.cam12	25.14	69.09	70.05	27.73	28.29	No gap
00j8.	L3.cam13	12.18	31.26	31.46	59.18	58.72	
	L3.cam22	12.11	30.10	30.59	58.39	59.41	
	L0.cam0	80.55	29.92	29.69	14.00	14.51	
Samo	L2.cam8	27.11	77.90	77.71	27.24	27.46	
obis	L2.cam12	28.01	76.87	77.97	26.94	27.52	
00js.	L3.cam13	12.90	32.16	32.29	65.87	65.69	
	L3.cam22	12.76	31.00	31.68	64.84	66.09	

Experiment 1: cross view semantic transfer via direct testing

Subset	test $(v_t) \setminus \text{train}(v_r)$	cam0	cam8	cam12	cam13	cam22	Good generalization
	L0.cam0	71.12	29.09	29.61	14.28	14.88	to unseen objects
Other	L2.cam8	24.63	70.21	70.16	28.14	28.54	L2↔L2
ohis	L2.cam12	25.14	69.09	70.05	27.73	28.29	No gap
00JS.	L3.cam13	12.18	31.26	31.46	59.18	58.72	
	L3.cam22	12.11	30.10	30.59	58.39	59.41	LU↔L2
	L0.cam0	80.55	29.92	29.69	14.00	14.51	Performance drop
Samo	L2.cam8	27.11	77.90	77.71	27.24	27.46	
obio	L2.cam12	28.01	76.87	77.97	26.94	27.52	
00JS.	L3.cam13	12.90	32.16	32.29	65.87	65.69	
	L3.cam22	12.76	31.00	31.68	64.84	66.09	

Experiment 1: cross view semantic transfer via direct testing

Subset	test $(v_t) \setminus \text{train}(v_r)$	cam0	cam8	cam12	cam13	cam22	Good generalization
	L0.cam0	71.12	29.09	29.61	14.28	14.88	to unseen objects
Other	L2.cam8	24.63	70.21	70.16	28.14	28.54	L2↔L2
other	L2.cam12	25.14	69.09	70.05	27.73	28.29	No gap
objs.	L3.cam13	12.18	31.26	31.46	59.18	58.72	
	L3.cam22	12.11	30.10	30.59	58.39	59.41	LU↔L2
	L0.cam0	80.55	29.92	29.69	14.00	14.51	Performance drop
Como	L2.cam8	27.11	77.90	77.71	27.24	27.46	
Same	L2.cam12	28.01	76.87	77.97	26.94	27.52	
objs.	L3.cam13	12.90	32.16	32.29	65.87	65.69	
	L3.cam22	12.76	31.00	31.68	64.84	66.09	

Experiment 2: planar homography-based transfer

Given a model, $f_{v_r \to ss_r}$, trained on (v_r, ss_r) pairs, we want to feed it with inputs from view v_t and obtain ss_t segmentation results referenced to v_t (ss_t).

Planar (3x3) homography mapping holds only for (i) quasi-planar scenes (ii) distant objects

Computation (4-point correspondence):

	$v_r = L0.cam0 \rightarrow$	$v_t = L2.cam8$	$v_r = L2.cam8 \rightarrow$	$v_t = L0.cam0$
	Other objs.	Same objs.	Other objs.	Same objs.
IoU	28.72 (+4,09)	31.29	24.35(-4,74)	24.84

a)

b)

c)

d)

e)

f)

g)

Experiment 2: planar homography-based transfer

 $v_r = \text{L0.cam0} \rightarrow v_t = \text{L2.cam8}$

 v_t , input at inference time.

Planar homography-based estimate of v_r : $\hat{v_r} = H_{t \to r}^{z=0}(v_t)$

Predicted ss_r : $\hat{ss_r} = f_{v_r \to ss_r}(\hat{v_r})$

Predicted ss_t : $\hat{ss}_t = H_{r \to t}^{z=0}(\hat{ss}_r)$, where $H_{r \to t}^{z=0} = (H_{t \to r}^{z=0})^{-1}$.

Ground truth for the task, ss_t .

Ground truth v_r view. Used for training the $f_{v_r \to ss_r}$ model.

Ground truth ss_r semantic map. Used for training the $f_{v_r \to ss_r}$ model.

a)

→ b)

c)

d)

e)

→ f)

 \mathbf{g}

Experiment 2: planar homography-based transfer

 $v_r = L0.cam0 \rightarrow v_t = L2.cam8$

 v_t , input at inference time.

Planar homography-based estimate of v_r : $\hat{v_r} = H_{t \to r}^{z=0}(v_t)$

Predicted ss_r : $\hat{ss_r} = f_{v_r \to ss_r}(\hat{v_r})$

Predicted ss_t : $\hat{ss}_t = H_{r \to t}^{z=0}(\hat{ss}_r)$, where $H_{r \to t}^{z=0} = (H_{t \to r}^{z=0})^{-1}$.

Ground truth for the task, ss_t .

Ground truth v_r view. Used for training the $f_{v_r \to ss_r}$ model.

Ground truth ss_r semantic map. Used for training the $f_{v_r \to ss_r}$ model.

a)

b)

c)

 \rightarrow d)

 \rightarrow e)

f)

g)

Experiment 2: planar homography-based transfer

 $v_r = L0.cam0 \rightarrow v_t = L2.cam8$

 v_t , input at inference time.

Planar homography-based estimate of v_r : $\hat{v_r} = H_{t \to r}^{z=0}(v_t)$

Predicted ss_r : $\hat{ss_r} = f_{v_r \to ss_r}(\hat{v_r})$

Predicted ss_t : $\hat{ss}_t = H_{r \to t}^{z=0}(\hat{ss}_r)$, where $H_{r \to t}^{z=0} = (H_{t \to r}^{z=0})^{-1}$.

Ground truth for the task, ss_t .

Ground truth v_r view. Used for training the $f_{v_r \to ss_r}$ model.

Ground truth ss_r semantic map. Used for training the $f_{v_r \to ss_r}$ model.

Takeaways

Introduced **MVMO**: (i) wide baseline (ii) multi-view (iii) synthetic dataset (iv) with semantic segmentation annotations that features (v) high object density and (vi) large number of occlusions.

Goal: Propel research in

(i) multi-view semantic segmentation

(ii) cross-view semantic transfer,

addressing limitations of monocular setups in heavily-occluded scenes

Publication A. Alvarez-Gila, J. Van De Weijer, Y. Wang, and E. Garrote, "*MVMO: A Multi-Object Dataset for Wide Baseline Multi-View Semantic Segmentation*," ICIP 2022 (accepted).

https://aitorshuffle.github.io/projects/mvmo/

Self-supervised learning for image-to-image translation in the small data regime

1		nt	ro	du	cti	on
---	--	----	----	----	-----	----

7	Conclusions	
6	Zero-Pair Semi-Supervised Cross-View Semantic Segmentation	ZPCVNet
5	MVMO: A Multi-Object Dataset for Wide Baseline Multi-View Semantic Segmentation	MVMO
4	A Probabilistic Model and Capturing Device for Remote Simultaneous Estimation of Spectral Emissivity and Temperature of Hot Emissive Materials	TES
3	Adversarial Networks for Spatial Context-Aware Spectral Image Reconstruction from RGB	RGB2HSI
2	Self-Supervised Blur Detection from Synthetically Blurred Scenes	SynthBlur

Reference view, v_r

- Monocular semantic segmentation system trained fully-supervised requiring camera relocation (e.g. industrial in-line production system): $v_r \rightarrow v_t$
- Inference with model trained on reference view (v_r) fails (domain shift).
- Labeling from new pose is very costly.

156

- Monocular semantic segmentation system trained fully-supervised requiring camera relocation (e.g. industrial in-line production system): $v_r \rightarrow v_t$
- Inference with model trained on reference view (v_r) fails (domain shift).
- Labeling from new pose is very costly.

- Monocular semantic segmentation system trained fully-supervised requiring camera relocation (e.g. industrial in-line production system): $v_r \rightarrow v_t$
- Inference with model trained on reference view (v_r) fails (domain shift).
- Labeling from new pose is very costly.
- Pure geometry-based tools (3x3 planar homography $H_{r \to t}^{z=0}$) fail for wide baselines.
- We need cross-view knowledge transfer tools that exploit statistical priors for cheap camera relocations.

- Monocular semantic segmentation system trained fully-supervised requiring camera relocation (e.g. industrial in-line production system): $v_r \rightarrow v_t$
- Inference with model trained on reference view (v_r) fails (domain shift).
- Labeling from new pose is very costly.
- Pure geometry-based tools (3x3 planar homography $H_{r \to t}^{z=0}$) fail for wide baselines.
- We need cross-view knowledge transfer tools that exploit statistical priors for cheap camera relocations.

Idea:

Leverage unlabeled (reference, target) view pairs.

• New semi-supervised task:

Zero-Pair, Cross-View semantic segmentation

- Train on:
 - Reference view (v_r) , labeled dataset $\mathcal{D}_{r,l}$
 - Disjoint cross-view, unlabeled dataset \mathcal{D}_u

Reference view

• New semi-supervised task:

Zero-Pair, Cross-View semantic segmentation

- Train on:
 - Reference view (v_r) , labeled dataset $\mathcal{D}_{r,l}$
 - Disjoint cross-view, unlabeled dataset \mathcal{D}_u

Reference view Target view

Target view, v_t

6-ZPCVNet

• New semi-supervised task:

Zero-Pair, Cross-View semantic segmentation

- Train on:
 - Reference view (v_r) , labeled dataset $\mathcal{D}_{r,l}$
 - Disjoint cross-view, unlabeled dataset \mathcal{D}_u
- Inference:
 - Input from target view, v_t
 - Predict on both reference, and target views

Target view, v_t Refere (useful for downstream vision/manipulation)

New semi-supervised task:

Zero-Pair, Cross-View semantic segmentation

- Train on:
 - Reference view (v_r) , labeled dataset $\mathcal{D}_{r,l}$
 - Disjoint cross-view, unlabeled dataset \mathcal{D}_u
- Inference:
 - Input from target view, v_t
 - Predict on both reference, and target views

Related work

Mix&Match Networks [Wang2020]

Translation between domain/modality pairs not seen during training

Enforcing latent space alignment of encoder-decoder pairs

[Johnson2016] M. Johnson et al., "Google's multilingual neural machine translation system: enabling zero-shot translation," arXiv, 2016 [Wang2020] Y. Wang et al., "Mix and match networks: multi-domain alignment for unpaired image-to-image translation," IJCV 2020

- ZPCVNet modules:
 - Reference-view fullysupervised semantic segmentation Encoder-Decoder [Er-Gr]
 - Reference-view Autoencoder [Er-Fr]
 - Cross-view Encoder-Decoder on RGB views [Et-CVT-Fr]
- Seek latent space alignment
 - Cross-View Transformer
 - Shared weights
 - Pseudolabels

- ZPCVNet modules:
 - Reference-view fullysupervised semantic segmentation Encoder-Decoder [Er-Gr]
 - Reference-view Autoencoder [Er-Fr]
 - Cross-view Encoder-Decoder on RGB views [Et-CVT-Fr]
- Seek latent space alignment
 - Cross-View Transformer
 - Shared weights
 - Pseudolabels

- ZPCVNet modules:
 - Reference-view fullysupervised semantic segmentation Encoder-Decoder [Er-Gr]
 - Reference-view Autoencoder [Er-Fr]
 - Cross-view Encoder-Decoder on RGB views [Et-CVT-Fr]
- Seek latent space alignment
 - Cross-View Transformer
 - Shared weights
 - Pseudolabels

- ZPCVNet modules:
 - Reference-view fullysupervised semantic segmentation Encoder-Decoder [Er-Gr]
 - Reference-view Autoencoder [Er-Fr]
 - Cross-view Encoder-Decoder on RGB views [Et-CVT-Fr]
- Seek latent space alignment
 - Cross-View Transformer
 - Shared weights
 - Pseudolabels

- ZPCVNet modules:
 - Reference-view fullysupervised semantic segmentation Encoder-Decoder [Er-Gr]
 - Reference-view Autoencoder [Er-Fr]
 - Cross-view Encoder-Decoder on RGB views [Et-CVT-Fr]
- Seek latent space alignment
 - Cross-View Transformer
 - Shared weights
 - Pseudolabels

- ZPCVNet modules:
 - Reference-view fullysupervised semantic segmentation Encoder-Decoder [Er-Gr]
 - Reference-view Autoencoder [Er-Fr]
 - Cross-view Encoder-Decoder on RGB views [Et-CVT-Fr]
- Seek latent space alignment
 - Cross-View Transformer
 - Shared weights
 - Pseudolabels

Inference: Semantic predictions on viewpoints that have no semantic ground truth

170

Experiments

Setup

Dataset: MVMO (Other Objects subset, 64x64)

Train with no available ground truth from the new viewpoint. Fully-supervised approach is not possible. ¹/₂ batch from each dataset (labeled $\mathcal{D}_{r,l}$, unlabeled \mathcal{D}_u)

Experiment 1

Cross-view with output in v_r

Experiment1: Output in v_r

Method	Trained on	bathtub	bed	chair	desk	dresser	monitor	nightstand	sofa	table	toilet	noBG	Avg.
FSCV	$x_{t,l}^i, y_{r,l}^i \sim \mathcal{D}_{r,l}^+$	04.81	03.54	04.43	00.00	00.00	00.00	05.64	00.00	04.43	00.00	02.29	07.45
$CV_{test}v_r$	$x_{r,l}^i, y_{r,l}^i \sim \mathcal{D}_{r,l}$	02.53	03.28	00.82	01.14	01.27	02.42	00.59	02.92	01.56	00.55	01.71	07.04
$CV_{test}v_t$	$x_{t,l}^{i'}, y_{t,l}^{i'} \sim \mathcal{D}_{r,l}^+$	02.22	02.65	02.82	03.11	03.28	02.58	03.58	02.47	02.08	02.81	02.76	07.81
Homography	$x_{r,l}^i, y_{r,l}^i \sim \mathcal{D}_{r,l}$	06.25	09.48	01.22	03.14	01.68	04.59	01.03	07.76	03.79	01.72	04.06	10.65
Mix&Match	$egin{aligned} x_{r,l}^{i'}, y_{r,l}^{i'} &\sim \mathcal{D}_{r,l} \ x_{r,u}^{j}, x_{t,u}^{j} &\sim \mathcal{D}_{u} \end{aligned}$	02.04	03.28	03.47	04.32	02.46	03.84	01.63	03.00	02.57	03.95	3.06	08.33
ZPCVNet (ours)	$\begin{aligned} x_{r,l}^i, y_{r,l}^i &\sim \mathcal{D}_{r,l} \\ x_{r,u}^j, x_{t,u}^j &\sim \mathcal{D}_u \end{aligned}$	17.73	21.47	14.33	10.81	18.52	22.82	22.73	12.81	14.29	20.42	17.59	23.10

IoU

Experiment 1

Cross-view with output in v_r

Method	CVT	PL	noBG	Avg.
Vanilla	No	No	03.17	09.26
Vanilla+PL	No	Yes	02.80	08.70
Vanilla+CVT	Yes	No	05.73	11.41
ZPCVNet (full model)	Yes	Yes	17.59	23.10

Ablation: both CVT and pseudolabels are needed

		Experime	ntl: Ou	tput in 1	v_r								IoU
Method	Trained on	bathtub	bed	chair	desk	dresser	$\operatorname{monitor}$	nightstand	sofa	table	toilet	noBG	Avg.
FSCV	$x_{t,l}^i, y_{r,l}^i \sim \mathcal{D}_{r,l}^+$	04.81	03.54	04.43	00.00	00.00	00.00	05.64	00.00	04.43	00.00	02.29	07.45
$CV_{test}v_r$	$x_{r,l}^i, y_{r,l}^i \sim \mathcal{D}_{r,l}$	02.53	03.28	00.82	01.14	01.27	02.42	00.59	02.92	01.56	00.55	01.71	07.04
$CV_{test}v_t$	$x_{t,l}^i, y_{t,l}^i \sim \mathcal{D}_{r,l}^+$	02.22	02.65	02.82	03.11	03.28	02.58	03.58	02.47	02.08	02.81	02.76	07.81
Homography	$x_{r,l}^i, y_{r,l}^i \sim \mathcal{D}_{r,l}$	06.25	09.48	01.22	03.14	01.68	04.59	01.03	07.76	03.79	01.72	04.06	10.65
Mix&Match	$egin{aligned} x_{r,l}^i, y_{r,l}^i &\sim \mathcal{D}_{r,l} \ x_{r,u}^j, x_{t,u}^j &\sim \mathcal{D}_u \end{aligned}$	02.04	03.28	03.47	04.32	02.46	03.84	01.63	03.00	02.57	03.95	3.06	08.33
ZPCVNet (ours)	$\begin{aligned} x_{r,l}^i, y_{r,l}^i &\sim \mathcal{D}_{r,l} \\ x_{r,u}^j, x_{t,u}^j &\sim \mathcal{D}_u \end{aligned}$	17.73	21.47	14.33	10.81	18.52	22.82	22.73	12.81	14.29	20.42	17.59	23.10

Experiment 2

Cross-view with output in v_t

Experiment2: Output in v_t

			2 . Outp										IoU
Method	Trained on	bathtub	bed	chair	desk	dresser	$\operatorname{monitor}$	nightstand	sofa	table	toilet	noBG	Avg.
$\mathrm{FS}v_t$ \star (upper bound	d) $x_{t,l}^i, y_{t,l}^i \sim \mathcal{D}_{r,l}^+$	30.86	33.11	24.70	18.88	25.19	29.39	33.06	22.14	11.80	32.35	26.15	31.67
CV_{test}	$x_{r,l}^i, y_{r,l}^i \sim \mathcal{D}_{r,l}$	09.87	10.50	03.39	04.67	03.67	09.16	03.15	10.91	05.96	04.31	06.56	13.29
Homography	$x_{r,l}^i, y_{r,l}^i \sim \mathcal{D}_{r,l}$	06.49	08.49	01.12	03.10	02.03	05.11	01.46	06.96	05.97	02.35	04.31	10.42
ZPCVNet (ours)	$\begin{aligned} x_{r,l}^i, y_{r,l}^i &\sim \mathcal{D}_{r,l} \\ x_{r,u}^j, x_{t,u}^j &\sim \mathcal{D}_u \end{aligned}$	16.40	17.07	09.57	10.13	06.54	14.87	06.73	14.95	11.20	11.80	11.93	18.10

Takeaways

- New semi-supervised task: Zero-Pair, Cross-View semantic segmentation
- ZPCVNet model:

Reasonable predictions on both references with one model (pluging CVT in/out) Outperforms other learned (deep) and geometry-based baselines over MVMO Initial baseline for further research in dense semantic knowledge transfer across views

Self-supervised learning for image-to-image translation in the small data regime

1	ntr	odu	ction

7	Conclusions	
6	Zero-Pair Semi-Supervised Cross-View Semantic Segmentation	ZPCVNet
5	MVMO: A Multi-Object Dataset for Wide Baseline Multi-View Semantic Segmentation	MVMO
4	A Probabilistic Model and Capturing Device for Remote Simultaneous Estimation of Spectral Emissivity and Temperature of Hot Emissive Materials	TES
3	Adversarial Networks for Spatial Context-Aware Spectral Image Reconstruction from RGB	RGB2HSI
2	Self-Supervised Blur Detection from Synthetically Blurred Scenes	SynthBlur

Conclusions

2 Self-Supervised Blur Detection from Synthetically Blurred Scenes

Contribution: Learning framework for self/weak/semi-supervised blur detection from synthetic degradation model. State-of-the art results without access to real blur masks.

3 Adversarial Networks for Spatial Context-Aware Spectral Image Reconstruction from RGB

Contribution: Method for spectral super-resolution from RGB images leveraging spatial context, achieving state-of-the art results.

4 A Probabilistic Model and Capturing Device for Remote Simultaneous Estimation of Spectral Emissivity and Temperature of Hot Emissive Materials

Contribution: Device and general Bayesian probabilistic method achieving remote online estimates for temperature and spectral emissivity with quantification of uncertainty, with a real application in EAF-based steelmaking.

Conclusions

5 MVMO: A Multi-Object Dataset for Wide Baseline Multi-View Semantic Segmentation

Contribution: New synthetic dataset (and code) enabling research in novel research lines: multi-view and cross-view semantic segmentation.

Future work:

(i) Code extension for additional modalities to support multi-modal and object-centric tasks.

6 Zero-Pair Semi-Supervised Cross-View Semantic Segmentation

Contribution: Novel semi-supervised task of zero-pair, cross-view semantic segmentation applicable to inline industrial scenarios. New method (ZPCVNet) outperforming geometric and deep baselines. **Future work:**

- (i) Adaptation of 2nd wave self-supervised methods to multi/cross view dense prediction tasks.
- (ii) Inclusion of inductive biases from multiple-view geometry (e.g. epipolar constraint)
- (iii) Attention-guided Cross View Transformer for dynamic spatial feature mapping across views.

Summary of published works (I)

- SynthBlur [1] A. Alvarez-Gila, A. Galdran, E. Garrote, and J. van de Weijer, "Self-supervised blur detection from synthetically blurred scenes," Image and Vision Computing, 2019.
- RGB2HSI [2] A. Alvarez-Gila, J. van de Weijer, and E. Garrote, "Adversarial Networks for Spatial Context-Aware Spectral Image Reconstruction from RGB." ICCVW 2017
- RGB2HSI [3] B. Arad, O. Ben-Shahar, R. Timofte, L. Van Gool, L. Zhang, M.-H. Yang, Z. Xiong, C. Chen, Z. Shi, D. Liu, F. Wu, C. Lanaras, S. Galliani, K. Schindler, T. Stiebel, S. Koppers, P. Seltsam, R. Zhou, M. El Helou, F. Lahoud, M. Shahpaski, K. Zheng, L. Gao, B. Zhang, X. Cui, H. Yu, Y. B. Can, A. Alvarez-Gila, J. van de Weijer, E. Garrote, A. Galdran, M. Sharma, S. Koundinya, A. Upadhyay, R. Manekar, R. Mukhopadhyay, H. Sharma, S. Chaudhury, K. Nagasubramanian, S. Ghosal, A. K. Singh, A. Singh, B. Ganapathysubramanian, and S. Sarkar, "NTIRE 2018 Challenge on Spectral Reconstruction from RGB Images," CVPRW 2018
 - **TES** [4] A. Picon^{*}, **A. Alvarez-Gila**^{*}, J. A. Arteche, G. A. López, and A. Vicente, "A Probabilistic Model and Capturing Device for Remote Simultaneous Estimation of Spectral Emissivity and Temperature of Hot Emissive Materials," IEEE Access, 2021. *Equal contribution
 - **TES** [5] A. Picon, A. Alvarez-Gila, A. Vicente, and Arteche, Jose Antonio, "System and method for determining the emitting temperature and emissivity in a wavelength range of metallurgical products," PCT/IB2019/061335, filed December 24, 2019
 - MVMO [6] A. Alvarez-Gila, J. Van De Weijer, Y. Wang, and E. Garrote, "MVMO: A Multi-Object Dataset for Wide Baseline Multi-View Semantic Segmentation," ICIP 2022.
- ZPCVNet [7] A. Alvarez-Gila, J. Van De Weijer, Y. Wang, and E. Garrote, "Zero-Pair Semi-Supervised Cross-View Semantic Segmentation," 3DV 2022 (under review).

Summary of published works (II)

Side projects at Tecnalia - Publications

Inverse problems – dehazing:

[8] A. Galdran, A. Alvarez-Gila, A. Bria, J. Vazquez-Corral, and M. Bertalmío, "On the Duality Between Retinex and Image Dehazing," CVPR 2018.

[9] C. Ancuti, C. O. Ancuti, R. Timofte, L. Van Gool, L. Zhang, M.-H. Yang, V. M. Patel, H. Zhang, V. A. Sindagi, R. Zhao, X. Ma, Y. Qin, L. Jia, K. Friedel, S. Ki, H. Sim, J.-S. Choi, S. Kim, S. Seo, S. Kim, M. Kim, R. Mondal, S. Santra, B. Chanda, J. Liu, K. Mei, J. Li, Luyao, F. Fang, A. Jiang, X. Qu, T. Liu, P. Wang, B. Sun, J. Deng, Y. Zhao, M. Hong, J. Huang, Y. Chen, E. Chen, X. Yu, T. Wu, A. Genc, D. Engin, H. K. Ekenel, W. Liu, T. Tong, G. Li, Q. Gao, Z. Li, D. Tang, Y. Chen, Z. Huo, A. Alvarez-Gila, A. Galdran, A. Bria, J. Vazquez-Corral, M. Bertalmío, H. S. Demir, O. F. Adil, H. X. Phung, X. Jin, J. Chen, C. Shan, and Z. Chen, "*NTIRE 2018 Challenge on Image Dehazing: Methods and Results,*" CVPRW 2018.

Agricultural image understanding:

[10] D. Argüeso, A. Picon, U. Irusta, A. Medela, M. G. San-Emeterio, A. Bereciartua, and A. Alvarez-Gila, "Few-Shot Learning approach for plant disease classification using images taken in the field," Computers and Electronics in Agriculture, 2020.

[11] A. Picon, M. Seitz, A. Alvarez-Gila, P. Mohnke, A. Ortiz-Barredo, and J. Echazarra, "Crop conditional Convolutional Neural Networks for massive multi-crop plant disease classification over cell phone acquired images taken on real field conditions," Computers and Electronics in Agriculture, 2020.

[12] A. Picon, A. Alvarez-Gila, M. Seitz, A. Ortiz-Barredo, J. Echazarra, and A. Johannes, "Deep convolutional neural networks for mobile capture device-based crop disease classification in the wild," Computers and Electronics in Agriculture, 2019.

[13] A. Johannes, A. Picon, A. Alvarez-Gila, J. Echazarra, S. Rodriguez-Vaamonde, A. D. Navajas, and A. Ortiz-Barredo, "Automatic plant disease diagnosis using mobile capture devices, applied on a wheat use case," Computers and Electronics in Agriculture, 2017.

Medical imaging/signal analysis:

[14] A. Picon, U. Irusta, A. Alvarez-Gila, E. Aramendi, F. Alonso-Atienza, C. Figuera, U. Ayala, E. Garrote, L. Wik, J. Kramer-Johansen, and T. Eftestøl, "Mixed convolutional and long short-term memory network for the detection of lethal ventricular arrhythmia," PLOS ONE, 2019.

[15] A. Picon, U. Irusta, A. Alvarez-Gila, E. Aramendi, E. Garrote, U. Ayala, F. Alonso, and C. Figuera, "Detección de fibrilación ventricular mediante técnicas de aprendizaje profundo," CASEIB 2017.

[16] A. Galdran, A. Alvarez-Gila, M. I. Meyer, C. L. Saratxaga, T. Araújo, E. Garrote, G. Aresta, P. Costa, A. M. Mendonça, and A. Campilho, "Data-Driven Color Augmentation Techniques for Deep Skin Image Analysis," arXiv:1703.03702 [cs], 2017.

Industry:

[17] A. Picon Ruiz, A. Alvarez-Gila, U. Irusta, and J. Echazarra Huguet, "Why deep learning performs better than classical machine learning approaches," DYNA, 2020.
Summary of published works (III)

Side projects at Tecnalia - Patents

Agricultural image understanding:

[18] D. Roldan Lopez, J. Romero Rodriguez, C. M. Spangler, C. Klukas, T. Eggers, R. Navarra-mestre, A. M. Ortiz Barredo, A. Alvarez-Gila, J. Echazarra Huguet, A. Picon Ruiz, And A. Bereciartua Perez, "Quantifying plant infestation by estimating the number of insects on leaves, by convolutional neural networks that provide density maps," EP 19200657.5 (191150EP01).

[19] A. Picon, M. Nachtmann, M. Seitz, P. Mohnke, R. Navarra-Mestre, A. Johannes, T. Eggers, A. O. Barredo, A. Alvarez-Gila, and J. Echazarra, "System and Method for Plant Disease Detection Support," 21-May-2019.

[20] A. Johannes, T. Eggers, A. Picon, A. Alvarez-Gila, A. M. Ortiz Barredo, and A. M. Díez-Navajas, "System and Method for Detecting Plant Diseases," WO/2017/194276, 17-Nov-2017.

Medical imaging/signal analysis:

[21] E. Garrote, A. Bereciartua, A. Picon, C. Lopez-Saratxaga, A. Alvarez-Gila, A. Galdran, R. Bilbao, and O. Belar, "Analysing histological images," PCT/ES2016/070881.

Summary of published code/data

SynthBlur, results and info on the method presented in Chapter 2 and in "Self-supervised blur detection from synthetically blurred scenes," Image and Vision Computing, 2019, https://github.com/aitorshuffle/synthblur

adv_rgb2hsi, models and test scripts corresponding to our submission to the NTIRE 2018 NTIRE 2018 Challenge on Spectral Reconstruction from RGB Images," CVPRW 2018 https://github.com/aitorshuffle/ntire2018_adv_rgb2hs

MVMO, code and dataset (soon) presented in Chapter 5 and in *MVMO: A Multi-Object Dataset for Wide Baseline Multi-View Semantic Segmentation,*" ICIP 2022, <u>https://aitorshuffle.github.io/projects/mvmo/</u>

Self-supervised learning for image-to-image translation in the small data regime

PhD thesis dissertation by Aitor Álvarez Gila

Directors:

Joost van de Weijer

Estibaliz Garrote

CVC, Bellaterra

2022-07-19

Computer Vision Center

MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE